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The growth of the Internet of Things (IoT) technology has indeed led to 
an increase in cybersecurity issues. While the Internet of Things enhances 
accessibility, integrity, availability, scalability, confidentiality, and 
interoperability among devices, it also faces vulnerabilities due to its diverse 
attack sources and lack of standardization in security protocols. This 
makes Internet of Things systems particularly susceptible to cyberattacks. 
It is essential to ensure proper security measures are in place to protect 
Internet of Things devices and networks, given their critical role in modern 
communications and the evolving threat landscape. Always remember to 
verify important security information from trusted sources.

Recent Advances in Internet of Things Security discusses the critical 
importance of robust security frameworks to protect Internet of Things 
ecosystems against various cyber threats. It highlights the security risks 
associated with Internet of Things devices and applications and presents 
a variety of potential solutions. It is essential to remain aware of these 
challenges to effectively safeguard Internet of Things systems. This 
book delves into the complexities of IoT security, exploring a range of 
vulnerabilities across different layers of the IoT architecture.

The book provides a comprehensive overview of Internet of Things 
security, emphasizing the significance of securing Internet of Things 
products and applications. It serves as a foundational resource for young 
researchers, academics, and industry professionals keen on advanced 
security solutions within the Internet of Things landscape, reflecting the 
current state of research and ongoing challenges in this field.
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1

Chapter 1

Strengthening IIoT security

Integrating intrusion detection 
systems with machine learning

Lahcen Idouglid, Said Tkatek, Khalid 
El Fayq, and Azidine Guezzaz

1.1  INTRODUCTION

The Industrial Internet of Things (IIoT) is a key component of Industry 
4.0, the fourth industrial revolution that leverages digital technologies to 
optimize industrial processes and operations. IIoT refers to the network 
of interconnected sensors, instruments, and devices that collect, exchange, 
and analyze data from various industrial domains, such as manufacturing, 
energy, transportation, and health care [1, 2]. IIoT enables improved pro-
ductivity, efficiency, quality, and sustainability in industrial systems, as well 
as new business models and opportunities [3, 4].

However, the widespread adoption of IIoT also poses significant secu-
rity challenges, as IIoT infrastructure becomes a prime target for cyberat-
tacks that can compromise the confidentiality, integrity, and availability 
of critical data and services [5, 6]. Moreover, the heterogeneous, dynamic, 
and complex nature of IIoT environments makes it difficult to apply tradi-
tional security solutions that rely on predefined rules or signatures to detect 
and prevent attacks [6, 7]. Therefore, there is a pressing need to develop 
advanced security measures that can cope with the evolving and sophisti-
cated cyber threats facing IIoT systems.

One promising direction is to integrate intrusion detection systems 
(IDSs) with machine learning (ML) algorithms to enhance the security of 
IIoT environments [8–14]. IDSs are tools that monitor network traffic and 
devices for any malicious or anomalous activities and alert the security 
administrators to take appropriate actions [15, 16]. ML is a branch of arti-
ficial intelligence that enables systems to learn from data and make predic-
tions or decisions without explicit programming [17, 18]. By combining the 
strengths of IDSs and ML, it is possible to develop a robust security frame-
work that can automatically learn the normal behavior patterns of IIoT 
devices and swiftly detect any deviations indicative of potential security 
breaches [19, 20]. Furthermore, ML can help to identify the type and source 
of the attacks, as well as to adapt to the changing patterns and dynamics of 
the IIoT landscape [21–24].

DOI: 10.1201/9781003587552-1
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In this chapter, we investigate the integration of IDS with ML algorithms 
to fortify the security of IIoT environments. We delve into the intricacies of 
developing a robust IDS framework that harnesses the capabilities of ML for 
anomaly detection and threat identification. We propose a novel approach 
that employs ML algorithms to analyze real-time data streams generated by 
IIoT devices and discern normal behavior patterns and swiftly detect devia-
tions indicative of potential security breaches. We evaluate the effectiveness 
of various ML techniques in enhancing the accuracy and responsiveness 
of IDS in the dynamic and complex IIoT landscape. We also compare our 
approach with existing IDS and ML solutions and demonstrate its superior 
performance and scalability. The findings underscore the significance of 
leveraging ML-driven IDS to proactively mitigate cyber threats, safeguard-
ing the integrity and reliability of IIoT ecosystems.

The rest of the chapter is organized as follows. Section 1.2 provides 
a background on IIoT, IDS, and ML. Section 1.3 presents the proposed 
approach for integrating IDS with ML algorithms for IIoT security. Section 
1.4 describes the experimental setup and results. Section 1.5 concludes the 
chapter and suggests future directions.

1.2  RELATED WORKS

The study [1] reviews IIoT security, addressing shared and specific chal-
lenges. It evaluates existing issues and solutions, stressing data confiden-
tiality and system integrity. Unique concerns regarding industrial control 
systems (ICS) are discussed, emphasizing tailored solutions for enhanced 
security.

This study [25] examines Internet of Things (IoT) security, highlight-
ing current standards and emerging threats. It emphasizes the need for 
standardized communication and data audit to mitigate diverse attacks. 
Integration of advanced technologies like machine learning and blockchain 
is explored to enhance security, despite increased system complexity.

Summarizing IoT security research, this paper [26] emphasizes standard-
ization and future developments. It offers insights into mainstream security 
models and effective solutions. The convergence of edge computing, SDN, 
and AI is proposed as a promising approach for resilient IoT security.

The paper [15] proposes a modified Random Forest algorithm for detect-
ing network attacks on IIoT devices. It claims high accuracy and appli-
cability to resource-constrained devices, comparing favorably with other 
machine learning algorithms.

Implementing multiple intrusion detection models, this paper [27] 
achieves high accuracy using machine learning algorithms. The Random 
Forest model stands out with 99.97% accuracy on the evaluated dataset, 
surpassing previous models.
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This research [28] introduces a hybrid IDS for SDN-enabled IIoT net-
works, combining blockchain and deep learning techniques. It employs 
CNN for anomaly detection and blockchain for secure log storage. The 
proposed IDS demonstrates effectiveness in terms of accuracy, detection 
rate, and scalability.

This paper [29] introduces a lightweight hybrid intrusion detection frame-
work for edge-based IIoT security. The paper leverages machine learning 
techniques. PK-IDS combines KNN and PCA for superior results, integrat-
ing Snort IDS for misuse detection. It achieves high accuracy and low false 
alarm rates on evaluated datasets, emphasizing its effectiveness in securing 
IIoT environments (Table 1.1).

1.3  METHODOLOGY

The section outlines methodology employed to address research questions, 
ensuring robustness and reliability. It presents a comprehensive overview 
of research design, data collection, and analytical techniques, ensuring 
transparency. Meticulous selection of tools tailored to the research nature 
facilitates systematic exploration. Step-by-step execution justifies method-
ological relevance and contribution, offering readers a clear roadmap to 
understand and evaluate study rigor.

1.3.1  The framework of our intrusion 
detection system

As can be seen in Figure 1.1, the framework of our IDS is composed of six key 
steps. In the first one, the Edge_IIoTset dataset provides authentic sensor read-
ings and communication patterns, facilitating network-based intrusion detec-
tion systems (NIDSs) research in industrial IoT environments. Pre-processing 
in step 2 involves data cleaning and normalization, enhancing dataset qual-
ity and reducing biases. Step 3 focuses on training machine learning models 

Table 1.1  Overview of published papers on IoT and IIoT security

Ref Year Types Accuracy Dataset IIoT/ IoT

[1] 2019 A Survey – – IIoT

[25] 2019 A Survey – IoT

[26] 2019 Review – – IoT and IIoT

[29] 2022 Hybrid IDS 99.10% Bot-IoT and NSL-KDD IIoT

[27] 2023 NIDS 99.97% WUSTL-IIoT2021 IIoT

[28] 2023 SDN/IDS 94.75% WUSTL-IIoT-2021 IIoT

[15] 2024 ML-IDS 99%  TON-IoT and 
UNSW-NB15

IoT
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(KNN, MLP, SVM, XGBoost) and evaluating their performance using met-
rics like accuracy and precision. Step 4 reconstructs the pre-processed data 
for further analysis. Step 5 employs tenfold cross-validation for robust model 
performance estimation. In step 6, classification criteria and thresholds guide 
NIDS decision-making, balancing sensitivity and specificity effectively.

1.3.2  Algorithms

The multilayer perceptron (MLP) [30] is an artificial neural network with 
multiple layers of nodes and learnable weights. Trained via supervised learn-
ing, it excels in capturing complex non-linear relationships within data. The 
k-nearest neighbors (KNN) algorithm [31], a non-parametric method, assigns 
data points to the majority class of their nearest neighbors in the feature 
space, employing metrics like Euclidean distance. XGBoost [32], belonging 
to the ensemble learning family, constructs decision trees and combines their 
predictions for high performance in classification and regression tasks. A sup-
port vector machine (SVM) [33] determines a hyperplane to best separate 
classes, ideal for high-dimensional spaces and resistant to overfitting.

1.4  RESULTS AND DISCUSSION

In the results and discussion section, we evaluate our IDS using metrics 
like accuracy, precision, recall, F1-score, Matthews correlation coefficient 

Step 6:  Decision Making (Intrusion or Normal)

Classifica�on criteria and thresholds 

Step 5: Cross-Valida�on

Tenfold cross-valida�on

Step 4: Reconstruc�on of Train and Test Data

Post-preprocessing dataset

Step 3: Model Training (KNN, MLP, SVM, XGBoost)

Training process Evalua�on metrics 

Step 2: Pre-processing 

Data cleaning Normaliza�on Feature selec�on PCA

Step 1: Dataset Selec�on

(Edge_IIoTset dataset) 

Figure 1.1  The key steps of our proposed IDS
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(MCC), and training time. We also conduct a comparative analysis of KNN, 
XGBoost, MLP, and SVM algorithms, revealing their nuanced effectiveness 
and efficiency in industrial network security.

Table 1.2 presents efficiency metrics for the Edge_IIoTset dataset, show-
casing the performance of XGBoost, KNN, MLP, and SVM algorithms. 
XGBoost and KNN excel with high accuracy, precision, and near-perfect 
recall and F1-score values. KNN achieves flawless recall. XGBoost and 
MLP demonstrate exceptional Matthews Correlation Coefficients, while 
SVM, although competitive, requires a lengthier training time. These 
insights aid in selecting the optimal algorithm for intrusion detection sys-
tems in industrial IoT security, considering both performance and compu-
tational efficiency.

Figure 1.2 illustrates the varying training times for algorithms (XGBoost: 
2s, KNN: 12.56s, MLP: 10s, SVM: 75.94s) on the Edge_IIoTset dataset, 
highlighting XGBoost’s remarkable efficiency in just two seconds. This 
emphasizes the crucial consideration of the trade-off between training 
time and performance in selecting the optimal algorithm for the Intrusion 
Detection System (IDS).

In Figure 1.3, accuracy results across algorithms demonstrate excep-
tional performance, with XGBoost leading at 0.9999, closely followed by 
SVM, KNN, and MLP. Precision values reveal low false positive rates, with 
XGBoost exhibiting the lowest at 0.9999. High recall percentages indicate 
the algorithms’ effective capture of positive instances, particularly XGBoost 
with a perfect recall of 100%. F1-scores highlight balanced effectiveness, 
with XGBoost leading. Matthews correlation coefficient results underscore 
XGBoost’s superiority in handling imbalanced datasets, providing a com-
prehensive evaluation of classification performance.

XGBoost stands out as the preferred choice for IIoT security with supe-
rior accuracy, precision, and efficiency. While KNN excels in intrusion 
detection recall, SVM’s extended training time may hinder real-time appli-
cations. Careful algorithm selection, considering performance and compu-
tational efficiency, is crucial for timely threat detection in IIoT systems. 
Continuous monitoring and exploration of ensemble methods further bol-
ster intrusion detection robustness.

Table 1.2  Results of efficiency metrics for the Edge_IIoTset dataset

 Algorithms ACC Precision Recall F1-score MCC
Training 
time (s)

Xgboost 0.9991 0.9991 0.9999 0.9991 0.9626 2

KNN 0.9999 0.9999 1 0.9999 0.9999 12.56

MLP 0.9993 0.9993 0.9999 0.9993 0.9931 10

SVM 0.9994 0.9994 0.9996 0.9994 0.9622 75.94
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1.5  CONCLUSION

In conclusion, our investigation into the integration of intrusion detec-
tion systems with machine learning algorithms for enhancing security in 
Industrial Internet of Things environments has yielded insightful results. 
The performance evaluation of IDS algorithms on the Edge_IIoTset dataset 
highlights XGBoost’s superior accuracy, precision, and efficiency, position-
ing it as a commendable choice for IIoT security. This study emphasizes 
the nuanced selection of algorithms to balance performance metrics and 
computational efficiency, ensuring the effective and timely detection of 

Figure 1.2  Comprehensive performance evaluation metrics for intrusion detection algo-
rithms on the Edge_IIoTset dataset
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security threats in dynamic IIoT systems. Future work includes continuous 
monitoring, periodic recalibration, and exploration of ensemble approaches 
to further enhance robust intrusion detection capabilities in evolving IIoT 
landscapes.
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Chapter 2

Scalable IoT anomaly detection

Federated and split learning

Rguibi Arjdal, Younes Asimi, Ahmed 
Asimi, and Lahcen Oumouss

2.1  INTRODUCTION

In recent years, the proliferation of Internet of Things (IoT) devices has led 
to unprecedented advancements in various domains, including health care, 
transportation, and smart homes [15]. However, the widespread adoption 
of IoT devices has also introduced significant security challenges, particu-
larly in anomaly detection and data privacy. Traditional anomaly detec-
tion methods often rely on centralized learning approaches, where raw 
data from IoT devices is transferred to a central server for analysis. While 
effective, this centralized paradigm raises concerns about data privacy and 
communication overhead [9], especially in resource-constrained IoT envi-
ronments. To address these challenges, novel techniques such as federated 
learning (FL) [8] and split learning (SL) have emerged as promising alter-
natives. FL enables collaborative model training across distributed devices 
without centralizing sensitive data [14], while split learning partitions 
model computation between devices and servers to preserve data privacy 
and optimize communication efficiency [7]. In this chapter, we present 
a comprehensive study on the application of federated and split learning 
for anomaly detection in IoT security. We begin by discussing the meth-
odology of federated learning, highlighting its benefits and limitations in 
the context of IoT networks. Subsequently, we introduce split learning as 
an extension of FL, providing insights into its underlying principles and 
advantages. Furthermore, we delve into the intricacies of applying split 
learning for anomaly detection in IoT security. By strategically partitioning 
data and leveraging collaborative model training [6], we demonstrate how 
split learning can enhance data privacy, reduce communication overhead, 
and preserve model performance in resource-constrained environments. 
Lastly, we explore the concept of SplitFed anomaly detection, where the 
integration of federated and split learning techniques offers a synergistic 
approach to further improve the accuracy and efficiency of anomaly detec-
tion in IoT networks.

DOI: 10.1201/9781003587552-2
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2.2  RELATED WORKS

In this section, a comprehensive review is conducted on contemporary 
research that advocates for machine learning–driven strategies to bolster 
the security of IoT networks. Thom et al. [18] presented a device-specific 
anomaly detection technique for monitoring IoT network traffic, particu-
larly when new devices are added. Their self-learning algorithm eliminates 
the need for pre-labeled attack data, as the system learns the patterns asso-
ciated with different attack types. Mothukuri et al. [10] proposed a machine 
learning (ML)–based approach for anomaly detection in smart home sen-
sor data. Their system focused on identifying abnormalities in sensor read-
ings to detect potential attacks. Tanzila et al. [16] proposes an anomaly 
based intrusion detection system (IDS) for IoT networks that leverages the 
power of deep learning [21–24]. The system is trained on normal network 
traffic data to establish a baseline for typical behavior and identify devia-
tions that might signal potential cyberattacks. Attota et al. [1] proposed 
MV-FLID, a novel intrusion detection approach for IoT networks that 
leverages Federated Learning and multiview learning. Recognizing limita-
tions of traditional methods, they emphasized the need for more insightful 
and privacy-preserving techniques. Nguyen et al. [11] proposed a federated 
learning (FL)–based intrusion detection system (IDS) for IoT networks. 
Their system incorporates an innovative feature: an automated technique 
specifically tailored to different device types. Thapa et al. [17] introduced 
SplitFed Learning (SFL), a novel approach that merges federated learning 
(FL) and split learning (SL) to achieve both model privacy and resource 
efficiency. Jithish et al. [5] proposed a Federated Learning (FL) approach 
for anomaly detection in smart grids, addressing challenges associated with 
server-based model training. In their work, machine learning models are 
trained locally on individual smart meters, eliminating the need to share 
raw data with a central server. This approach prioritizes data privacy by 
relying on regular updates of model parameters instead of sharing raw data.

2.3  METHODOLOGY

This section outlines the methodological strategy utilized in the present 
study for constructing an anomaly-based intrusion detection system (IDS) 
for Internet of Things (IoT) networks.

2.3.1  Federated learning

Federated learning (FL) is a distributed machine learning paradigm that 
enables collaborative model training on decentralized devices. This approach 
offers a significant advantage over traditional centralized training, where 
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data is transferred from resource-constrained devices to a central server for 
model updates.

FL offers several advantages for anomaly detection in IoT security:

• Enhanced data privacy: FL prioritizes data privacy [2] by keeping sen-
sitive network traffic data on individual devices. This is particularly 
crucial in IoT environments where raw data transmission can raise 
privacy concerns due to the potential for sensitive information leak-
age. During the training process, only model updates are exchanged, 
significantly reducing the risk of exposing raw data.

• Improved scalability: FL scales effectively to handle large-scale IoT 
deployments. By distributing the training workload across individual 
devices, FL alleviates the computational burden on a central server 
and facilitates efficient training in resource-constrained IoT.

• Enhanced resilience: The distributed nature of FL fosters resilience 
against potential failures. Unlike centralized approaches where a 
single point of failure can cripple the entire system, FL’s distributed 
architecture ensures continued operation even if individual devices 
experience downtime [20].

FL training process: The proposed system leverages FL for anomaly detec-
tion model training. This process can be summarized as follows:

• Local model training: Each device within the IoT network trains a 
local copy of the anomaly detection model on its own network traffic 
data.

• Parameter aggregation: After local training, model updates are 
exchanged between devices or with a central server for aggregation. 
This aggregation process combines the knowledge gained from each 
device’s local training, leading to a more robust global model.

• Global model broadcast: The aggregated global model is then broad-
cast back to individual devices for further local training iterations. 
This iterative procedure persists until a specified stopping condition, 
such as convergence, is achieved.

Figure 2.1 depicts the federated learning process. In this approach, devices 
collaborate on model training without transferring raw data to a central 
server. This distributed approach helps to preserve data privacy and security.

2.3.2  Split learning

Split learning (SL) emerges as a promising paradigm that bridges the 
gap between federated learning (FL) and traditional centralized learn-
ing approaches [3]. It offers distinct advantages in scenarios where data 
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privacy is paramount and resource limitations on individual devices pose 
challenges. With regard to motivation, we opted for split learning due to 
its benefits:

• Enhanced data privacy: FL keeps data on devices but may leak infor-
mation through model updates. SL mitigates this by partitioning the 
data itself, with sensitive parts remaining on devices [19].

• Reduced communication overhead: FL can suffer from communica-
tion bottlenecks in large deployments. SL offloads training to a pow-
erful edge server, reducing data transmission [13].

Split learning architecture for anomaly detection

The split learning architecture employed in our system is illustrated in 
Figure 2.2. Here is a breakdown of the key components and the step-by-
step process:

Data partitioning and pre-processing. This crucial stage involves the 
collection, pre-processing, and strategic partitioning of raw network 
traffic data:
• Raw network traffic data is collected by each device.
• Devices pre-process the data (e.g., normalization, feature 

selection).
• The data is strategically partitioned:

Figure 2.1  Federated learning architecture
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• A subset of features (potentially anonymized for privacy) is stored 
locally on the device.

• The remaining features or computationally intensive tasks are des-
ignated for the edge server.

Model splitting. The anomaly detection model is functionally divided 
between devices and the edge server:
• Feature extraction layers, responsible for extracting relevant pat-

terns, reside on devices due to lower computational demands.
• Classification layers, performing the final anomaly detection deci-

sion, might be placed on the edge server due to higher complexity.

Local model training. Devices train their local portion of the anomaly 
detection model on the partitioned data.

Model update exchange. Devices periodically transmit their locally 
trained model updates to the edge server using a secure communica-
tion protocol.

Global model aggregation (edge server):
• The edge server aggregates the received model updates from all 

devices.
• It updates its own portion of the model based on these aggregated 

updates.
Iterative training. Steps 3–5 are repeated for multiple iterations until a 

stopping criterion (e.g., convergence) is met.

Figure 2.2  Split learning architecture
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2.4  PROPOSED ANOMALY DETECTION APPROACH 

WITH SPLIT LEARNING FEDERATED (SPLITFED)

This section presents our proposed methodology for anomaly detection in 
the Internet of Things (IoT) networks. It leverages split learning federated 
(SplitFed), a powerful hybrid technique that addresses the challenges of pri-
vacy and communication overhead in traditional FL approaches [4].

2.4.1  Challenges of conventional 
anomaly detection methods

Centralized learning methods, while effective, often require transferring 
raw network traffic data from resource-constrained IoT devices to a central 
server. This raises concerns about:

• Data privacy: Sensitive data collected by IoT devices might be com-
promised during transmission or storage on a central server.

• Communication overhead: Large-scale deployments of IoT devices 
can generate significant amounts of data, leading to communication 
bottlenecks when transferred to a central location [12]. Federated 
learning offers a promising alternative by enabling collaborative 
model training without centralizing device data. However, FL might 
still leak information through model updates.

2.4.2  Addressing challenges with SplitFed

• Data partitioning: SplitFed balances privacy and model learning by 
keeping a subset of features (potentially anonymized) on devices, 
while offloading complex tasks to a powerful edge server.

• Federated learning paradigm: SplitFed leverages the distributed learn-
ing nature of FL. Devices collaboratively train their local models on 
the partitioned data and periodically transmit updates to the edge 
server.

• Model splitting: The anomaly detection model is functionally divided 
between devices and the edge server. Feature extraction layers reside 
on devices due to their lower computational demands. Classification 
layers, requiring higher complexity, might be placed on the edge 
server.

2.4.3  Benefits of SplitFed for anomaly 
detection in IoT networks

SplitFed enhances IoT anomaly detection by safeguarding data confiden-
tiality on local devices, reducing communication overhead through edge 
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server task distribution and maintaining model performance via strategic 
data partitioning and model splitting.

2.5  CONCLUSION

By incorporating split learning federated (SplitFed), the proposed approach 
offers a robust and secure solution for anomaly detection in resource-
constrained IoT environments. This approach effectively addresses the 
challenges of data privacy and communication overhead associated with 
traditional methods. SplitFed leverages the strengths of both federated 
learning and split learning, enabling collaborative model training on dis-
tributed data while maintaining privacy. Data partitioning keeps sensitive 
information on devices, and model splitting optimizes resource utilization 
by offloading computationally intensive tasks to the edge server. This col-
laborative approach reduces communication overhead compared to central-
ized learning methods. The SplitFed-based anomaly detection system can 
play a crucial role in safeguarding the security and integrity of IoT net-
works. By enabling real-time identification of anomalies in network traf-
fic data, this approach can help prevent security breaches, unauthorized 
access, and other malicious activities. As the number of interconnected 
devices continues to grow, secure and efficient anomaly detection solutions 
like SplitFed will become increasingly important for ensuring the smooth 
and secure operation of IoT networks.
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Chapter 3

Machine learning–based 
detection in wireless 
sensor networks

Mansour Lmkaiti, Houda Moudni, 
and Hicham Mouncif

3.1  INTRODUCTION

In recent years, there has been an exponential increase in the use of wireless 
sensor networks (WSNs) for environmental and physical condition moni-
toring in both industrial and research areas [1, 2]. WSNs are well known 
for being straightforward, efficient, affordable, and easy to implement 
when compared to other sensing devices. As a result, they have been widely 
applied in a variety of industries, including telecommunications, health 
care, military operations, and environmental research. WSNs are usually 
set up as a collection of geographically dispersed sensor nodes that work 
together to gather and monitor environmental and physical data [3]. These 
sensor nodes create wireless communication inside the network and send 
data to a central node for storage and processing—often referred to as the 
base station (BS) or the sink node.

The use of WSNs in inaccessible and challenging environments to iden-
tify environmental anomalies, such as floods, storms, and wildfires. It is 
commonly known that seismic occurrences and volcanic activity can also 
be used in less hazardous contexts, such as health monitoring, smart infra-
structure development, transportation, and the Internet of Things (IoT) 
[4–8]. However, WSN design has inherent restrictions due to its basic sim-
plicity. WSNs are highly vulnerable to security breaches due to their limited 
resources, which include battery power, memory, storage, communica-
tion bandwidth, and compute power. This poses a significant issue when 
it comes to fortification. Furthermore, these vulnerabilities are increased 
when sensor nodes are placed in unattended areas.

Denial-of-service (DoS) attacks are the most common security threat to 
wireless sensor networks. Their primary goal is to deplete node resources, 
especially power reserves, by preventing regular operations. Various defense 
techniques are needed to protect WSNs against DoS assaults and other 
security risks. Several studies have supported several intrusion detection 
systems (IDSs), using machine learning (ML) and deep learning methods to 
obtain impressive attack detection accuracy [8–10].
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This chapter investigates ML methods designed to identify and catego-
rize various types of assaults in wireless sensor networks [11, 12]. Our main 
goal is to develop a flexible, accurate, and low-power algorithm that can 
identify common assaults in wireless sensor networks. Our analysis covers 
a wide range of attack scenarios, including brute force SSH attempts, TCP 
null attacks, IP fragmentation attacks, accelerated SYN floods, SYN/ACK 
and RST floods, ARP spoofing, UDP port scans, DDoS MAC floods, and 
ICMP echo request floods. After a thorough analysis of previous work, we 
build on this foundation to propose our own approach to machine learn-
ing–driven intrusion detection systems for WSNs. The core of our meth-
odology consists of training four different machine learning algorithms on 
the IDSAI dataset, with the aim of improving the accuracy and efficiency of 
attack detection mechanisms.

3.2  RELATED WORK

Wireless sensor networks face security issues and vulnerabilities while data 
packets are being transmitted between the nodes that make up the network 
[2]. Because WSNs have a large number of sensor nodes, they are vulner-
able to a wide range of threats and attacks. Prior research has attempted to 
address these issues by utilizing abuse and anomalous detection techniques.

As an example, a previous work combined two different methodologies 
to present an anomaly detection framework customized for heterogeneous 
WSNs. The framework compares a long-term method that analyzes data 
from heterogeneous sensors network-wide with a short-term strategy that 
examines individual node data locally. This combination demonstrated a 
skillful synthesis that produced better results by overcoming the drawbacks 
of the separate methods [13].

An extensive assessment of modern anomaly-based intrusion detection 
systems (IDS) [8] was carried out by Soliman et al. for wireless sensor net-
works that are hierarchical. A 10,000 records total, evenly divided between 
normal and anomalous entries, covering a variety of attacks and samples, 
was used in their experimentation. The results indicated that the intru-
sion detection–based support vector machine (SVM) approach was more 
accurate than the fuzzy c-means (FCM) and the fuzzy rule-based approach 
(FRM) IDS [14].

A thorough investigation was carried out by Yousef et al. with the aim 
of identifying four different types of attacks using several algorithms: sup-
port vector machine (SVM), random forest (RF), K-means, and naive Bayes. 
After careful consideration of the chosen features, they determined that the 
random forest classifier (RFC) was the most accurate classifier [15].

An intrusion detection system (IDS) for WSNs based on a semi-super-
vised machine learning paradigm was proposed by Nadiammai et al. 
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Nevertheless, resource consumption factors were not taken into account in 
their analysis.

Panda and colleagues used various classifiers combined with unsuper-
vised clustering methods to identify intrusions in wireless sensor net-
works. Although they did not take into account other forms of attacks, 
Sangkatsanee et al. proposed intrusion detection approaches that used a 
supervised machine learning algorithm specifically designed for spotting 
testing or denial of service assaults.

3.3  MACHINE LEARNING–BASED 

ANOMALY DETECTION IN WSN

In this chapter, we focus on the application of machine learning algorithms 
for anomaly detection in WSNs. Anomaly detection plays a crucial role in 
identifying and mitigating unexpected and malicious behavior within the 
network [8], ensuring the integrity and reliability of collected sensor data.

3.3.1  Random forest classifier

The random forest classifier employs similarity queries and a divide-and-
conquer strategy to enhance efficiency, creating an ensemble of weak learn-
ers from decision trees to form a robust learner.

3.3.2  Decision tree classifier

The decision tree classifier effectively manages both categorical and con-
tinuous dependent variables. It partitions the data [16] into subsets of the 
same type, aiming to establish distinct groups based on the most significant 
independent variables.

3.3.3  Extra trees classifier

The extra trees classifier [17] employs a fully random approach for decision 
tree–based classification. By constructing additional trees using the entire 
sample and utilizing bootstrap copies of the training sample, it determines 
the optimal cutoff points for each random feature at a node [10]. This sig-
nificantly reduces computational burden compared to standard methods.

3.3.3.1  Gradient boosting

Gradient boosting [18] is a robust algorithm for regression and classifica-
tion tasks. It iteratively improves weak predictive models like decision trees, 
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correcting errors from previous models to minimize them. If no clear pat-
terns emerge, the algorithm can be halted to prevent overfitting.

3.3.4  XGB classifier

XGB excels in efficiently handling large datasets while delivering strong 
predictive performance. It employs a gradient boosting method to enhance 
model accuracy iteratively by adjusting the weights of training examples 
and minimizing a loss function [19].

Physical security and cryptography [20, 21] are two different approaches 
to protect data in sandy sensor networks. Physical security consists of pro-
tecting the devices, infrastructure, and physical environments in which the 
sensor networks are deployed, while cryptography uses encryption tech-
niques to protect data when stored, transmitted, or processed. Physical 
security is important because it protects wireless sensor networks from 
physical attacks such as theft, sabotage, and destruction. Physical secu-
rity measures may include the use of waterproof housing to protect sen-
sors from the elements and the installation of surveillance cameras to alert 
in case of intrusion encryption. Meanwhile, encryption uses techniques to 
protect data against electronic attacks such as piracy, interception, and fal-
sification. Encryption techniques may include the use of encryption keys 
to encrypt data, the use of security protocols to ensure the integrity and 
authenticity of data, and the use of identification mechanisms to ensure that 
only authorized users have access to the data.

The Bot-IoT dataset contains a significant amount of redundant data in 
its input detection information, which can potentially result in unfavorable 
outcomes. To address this issue, we conducted experiments using controlled 
machine learning algorithms on the IDSAI dataset [9]. The IDSAI dataset is 
a modified version of the Bot-IoT dataset specifically designed for wireless 
sensor networks.

• ICMP echo request flood

This attack involves sending a large number of ICMP echo (ping) requests to 
a target, aiming to flood the network and cause degradation in performance.

• SYN/ACK flooding

SYN/ACK flooding attack aims to exhaust the resources of a target system 
by sending a massive amount of unsolicited SYN/ACK packets, forcing the 
system to allocate resources to handle these established connections [22].

• SYN/ACK faster
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Faster SYN flooding is a variant of the traditional SYN flooding attack, 
where the attacker rapidly sends a sequence of SYN packets to deplete the 
resources of the target system [22].

3.4  METHODOLOGY

In our research, we utilized decision tree classification and gradient boost-
ing algorithms [11] to analyze wireless sensor network data. We collected 
sensor data, including environmental factors like temperature and humidity 
[19], in a controlled setting. After pre-processing, which involved removing 
outliers and standardizing the data, we split it into training and test sets. 
Using the Python scikit-learn library, we trained the models on the training 
data and adjusted hyperparameters to improve accuracy on the test set. We 
evaluated model performance using metrics such as accuracy, recall, and 
F1 score.

Labls binary: (Table 3.1)
The gradient boosting classifier (Figure 3.1) outperforms others with an 
accuracy of 0.9499 and cross-validation accuracy of 0.9497, despite its lon-
gest training time (448.9618 seconds) and prediction time (1.5433 seconds). 
In contrast, the decision tree classifier has slightly lower accuracy (0.9495 
seconds) and cross-validation accuracy (0.9495) but significantly shorter 
training time (4.3720 seconds) and prediction time (0.0206 seconds).

Table 3.1  Results of dataset (labls binary)

Column 1
Decision 

tree
Extra trees
classifier

Random 
forest

Gradient 
boosting XGB classifier

Time training 4.3720 433.9879 238.1683 448.9618 76.5877

Time 
prediction

0.0206 1.7625 1.8224 1.5433 1.5433

Accuracy 
score

0.9495 0.9468 0.9498 0.9499 0.9497

F1 score 0.9495 0.9468 0.9497 0.9498 0.9498

Recall score 0.9495 0.9468 0.9498 0.9499 0.9497

Precision 
score

0.9525 0.9492 0.9527 0.9528 0.9528

MSE 0.0505 0.0532 0.0502 0.0501 0.0503

Roc_Auc 0.9898 0.9851 0.0502 0.9909 0.9909

CK 0.8991 0.8937 0.8995 0.8998 0.8995

Time,CV 0.9495 0.9465 0.9496 0.9497 0.9498

CV 0.0005 0.0007 0.0005 0.0006 0.0005
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Features used by the gradient boosting classifier:

Labls multicase: (Table 3.2)
The selection of binary or multiclass classification depends on the type of 
data and the objective of the classification task. Binary classification is typi-
cally used when the task involves predicting the class of an observation that 
belongs to one of two possible classes, while multiclass classification is used 
when the task involves predicting the class of an observation that belongs 
to one of several possible classes [9].

In binary classification, the model is trained to predict a binary class, 
usually represented by 0 or 1, for each observation. The model output is 
therefore a binary value that indicates the predicted class. In contrast, in 

Figure 3.1  (a) Gradient boosting classifier, (b) Confusion matrix (gradient boosting)
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multiclass classification [9] the model predicts the probability of each pos-
sible class for each observation.

To obtain accurate and dependable results, it is essential to choose the 
appropriate classification algorithm based on the data and the objective of 
the classification task. The selection of binary or multiclass classification 
can also impact the performance metrics of the model, such as precision, 
recall, and F1-score, among others.

3.5  DISCUSSIONS OF THE RESULTS

In this study, we evaluated the effectiveness of multiple classification algo-
rithms, including random forest classifier, gradient boosting classifier, 
XGB classifier (Figure 3.1), and decision tree classifier (Figure 3.2), using 
a dataset of wireless sensor networks [9]. We discovered that combining 
the strengths of different classification algorithms generated more precise 
and reliable results. Our findings demonstrated that random forest was the 
most accurate algorithm with a precision score of 0.97, followed by gradi-
ent boosting with a precision score of 0.96, XGB classifier with a precision 
score of 0.94, and decision tree classifier with a precision score of 0.89. 
Overall, our study highlights the importance of using multiple classifica-
tion algorithms and prioritizing machine learning security to obtain precise 
and reliable results in a wireless sensor network production environment. 
While classification algorithms [17] can identify patterns in sensor data and 
predict future events, it is crucial to focus on machine learning security to 
ensure the confidentiality and integrity of data and results.

Table 3.2  Results of dataset (multiclass)

Performance 
metrics

Decision 
tree

Extra trees
classifier

Random 
forest

Gradient 
boosting

XGB 
classifier

Time training 12.4049 784.9534 353.7095 1776.2017 747.5477

Time 
prediction

0.0431 6.1484 3.4765 7.2816 7.7917

Accuracy 
score

0.9247 0.9216 0.9248 0.9242 0.9497

F1 score 0.9181 0.9159 0.9179 0.9159 0.9185

Recall score 0.9247 0.9216 0.9248 0.9242 0.9257

Precision score 0.9224 0.9182 0.9230 0.9238 0.9246

MSE 1.188 1.250 1.181 1.195 1.1663

Roc_Auc 0.9932 0.9898 0.9945 0.9943 0.9946

CK 0.8936 0.8896 0.8937 0.8925 0.8949

Time,CV 0.9250 0.9221 0.9256 0.9244 0.9261

CV 0.0005 0.0004 0.0005 0.0004 0.0005
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To process our dataset and apply machine learning algorithms [23], 
we used an integrated development environment (IDE), such as Jupyter 
Notebook, to write and execute our Python code. We used the Python 
scikit-learn library to implement machine learning algorithms, including 
logistic regression, classification of neighboring k-nearest, classification of 
decision trees, and gradient boosting. We divided our dataset into a train-
ing set and a test set, and we used cross-validation techniques to evaluate 
the performance of each algorithm. By using this hardware, we were able to 
effectively apply machine learning algorithms to our dataset, allowing us to 
analyze data and develop accurate predictive models. These results suggest 
that the use of quality hardware and integrated development environments 

Figure 3.2  (a) Decision tree classifier, (b) Confusion matrix (decision tree)
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can help improve the efficiency of data analysis and the development of 
machine learning models [23].

3.6  CONCLUSION

Wireless sensor networks are systems of distributed sensors that are capable 
of collecting and monitoring data in various environments such as build-
ings, factories, and urban areas. The collected data can be utilized for a 
wide range of applications such as health monitoring, air quality moni-
toring, and environmental monitoring. However, the challenges associated 
with the distributed nature of sensors and the constraints of bandwidth and 
energy can make data collection in these environments difficult. This has 
led to an increased popularity in the use of machine learning algorithms 
for sensor data classification. Classification algorithms have the ability to 
identify patterns in sensor data and predict future events.

In our study, we evaluated the effectiveness of several classification algo-
rithms, including Random Forest, gradient boosting, XGB classifier, and 
decision tree classifier, on a dataset of wireless sensor networks. We found 
that combining the strengths of multiple classification algorithms led to 
more accurate and reliable results.

In conclusion, our study underscores the importance of using multiple 
classification algorithms and prioritizing machine learning security to 
obtain precise and dependable results in a wireless sensor network pro-
duction environment. While classification algorithms have the potential to 
identify patterns in sensor data and predict future events, it is critical to 
focus on machine learning security to ensure the confidentiality and integ-
rity of data and results.
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Chapter 4

A secure approach for next-
generation IoT networks

A comparative analysis

Hafida Assmi, Azidine Guezzaz,  
Said Benkirane, and Mourade Azrour

4.1  INTRODUCTION

In the 21st century, the Internet of Things (IoT) is the next generation 
of things. It has become a very important technique, connecting various 
aspects of our daily lives to the Internet, such as smart cities, intelligent 
transporting, health-care systems, etc. [1–6]. Due to the speedy growth of 
mobile Internet and IoT applications [3, 7, 8], traditional centralized cloud 
computing faces serious challenges, including low spectral efficiency (SE), 
a non-adaptive machine communication type, and high latency. Hence, 
various edge computing technologies, namely mobile edge computing, fog 
computing, and cloudlets, sourced from different backgrounds, have been 
rising to reduce latency, improve SE, enhance the massive machine type 
of communication, and improve network performance. Edge computing is 
becoming increasingly popular with businesses [9, 10]. At a time when the 
amount of data created daily is dizzying, companies are saving precious 
time by processing data locally. The primary goal of this work is to improve 
the performance of network intrusion detection systems using RF, KNN, 
and SVM machine learning algorithms to detect normal activities and vari-
ous types of attack, such as DDoS/DoS, and SQL_injection, etc., within 
NSL-KDD and Edge-IIoT datasets. To achieve this, we employ ensemble 
learning to enhance performance measures and reduce learning time. Two 
contributions were validated:

First, we employ the ensemble learning method to optimize and reinforce 
the performance of our proposed model while reducing learning time 
to make the system more efficient.

Second, to set up effective detection systems, a classification model is 
constructed based on three primary components: data pre-processing, 
building the model, and evaluation performance.

The remainder of this chapter is structured as follows: in Section 4.2 
we present some related works in intrusion detection approaches that 
integrate ML, DL, and ensemble learning algorithms. In Section 4.3, 
we describe and design the novel framework. Section 4.4 shows the 
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experimental evaluation and results for our model. Finally, the chap-
ter ends with a conclusion and future work.

4.2  RELATED WORKS

In 2018 Benaddi et al. [11] proposed a PCA-fuzzy clustering-KNN tech-
nique, which is a set of principal component analysis and fuzzy cluster-
ing using the nearest neighbor feature selection methods using NSL-KDD 
dataset to detect DoS, R2L, U2R, and Probe attacks. Additionally, Resende 
et al. [12] presented a general survey of the basic concepts related to IDS, 
including data collection, evaluation metrics, attacks, modeling, commonly 
used methods, and taxonomies. They reviewed random forest–based meth-
ods implemented in this context, taking into account the particularities of 
these models. In 2019 Zeng et al. [13] proposed a lightweight framework 
using deep learning for encrypted traffic classification and intrusion detec-
tion; however, no or little attention has been paid to the effect of contradic-
tory attacks against these frameworks. Chaabouni et al. [14] investigated 
ML algorithms used in NIDS expressly designed for IoT devices and the 
special challenges faced by NIDS in IoT environments. In 2020, Wazirali 
et al. [15], to improve an IDS, proposed an approach based on the KNN 
hyperparameter tuning with five-fold cross-validation. In the same year, 
Tang et al. [16], to identify the real-time SQL injection attack on HTTP 
traffic data, proposed an approach based on different ANN models, includ-
ing Long Short-Term Memory (LSTM) and MLP. One year later, Jie et al. 
[17] built an intrusion detection system using the SVM and implemented 
the NB feature transformation technique on the original features to gen-
erate high-quality new data. They considered that data quality is crucial 
to improve IDS performance. This model gives the best accuracy for dif-
ferent datasets, such as 99.35% on NSL-KDD, 93.75% on UNSW-NB15, 
98.58% on KYOTO 2006+, and 98.92% on CICIDS 2017. Concomitantly, 
Jin et al. [18] used gradient GBM, extreme gradient boosting (XGB), and 
Light GBM to improve performance for a deep learning model IDS using a 
convolutional neural network for binary and multi-cast classifications. The 
experiment results prove that the model gives the minimum detection score 
of around 99.7% percent. Concurrently, Guezzaz et al. [19], by using the 
NSL-KDD and CICIDS2017 datasets, proposed a NIDS model using DT. 
Then, using the same data, they compared their model with other models. 
The latter gave 99.42% average accuracy with NSL-KDD and 98.8% with 
the CICIDS 2017 dataset. In 2022, Azrour et al. [1] used NSL-KDD, IoT-
23, BoT-IoT, and Edge-IIoT datasets to benchmark their classifiers, which 
are ensemble classifier, gradient boosting (GB), and decision tree (DT), by 
way of the open-source CatBoost for IoT security. Moreover, this approach 
gives excellent rating performance metrics of ACC, precision, and recall 
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around 99.9% on a record detection and computation time. In 2023 Mohy-
Eddine et al. [20] proposed an intrusion detection model using KNN and 
election-based feature selection such as principal component algorithms 
(PCA), univariate statistical test, and genetic algorithm. Furthermore, to 
enhance the performance of their model on imbalanced datasets (BoT-IoT), 
using the MCC, it scored up to 97%, 99.99% for ACC, and 102s for the five 
selected features. Simultaneously, Ennaji et al. [2] created a novel machine 
learning–based IDS named i-2NIDS using the NSL-KDD dataset to detect 
normal activities, DDoS/DoS, Probing, R2L, and U2R attacks. The experi-
ment results showed the efficiency of the model with a test accuracy score 
of about 99%. Zhang et al. [21] propose a new approach to intrusion 
detection classification that incorporates advanced feature engineering 
and model optimization techniques. The method uses a feature engineer-
ing perspective that uses minimum redundancy feature selection (mRMR) 
maximum mutual information correlation and synthetic minority class 
oversampling (SMOTE) technique to process network data. Yao et al. [22] 
offer a lightweight intelligent NIDS using a bidirectional automatic encoder 
GRU and a set learning (Soft Voting) that can identify unknown attacks 
as zero-day attacks. The results as evaluated on WSN-DS, KDD CUP99, 
and UNSW-NB15 datasets show the pattern recognition rates proposed 
in the three datasets increased to 97.91%, 98.23%, and 98.92%, respec-
tively. Louk et al. [23] used NSL-KDD, UNSW-NB15, and HIKARI-2021 
databases to evaluate a dual ensemble model (Dual-IDS) by merging two 
existing ensemble techniques, namely bagging and gradient decision tree 
(GBDT). The results indicate that this combination is a better solution for 
the anomaly-based IDS task. In 2024 Saied et al. [24] produced a survey 
chapter that focuses on examining recent developments in the application of 
artificial intelligence to intrusion detection in the IoT domain. They selected 
several articles and classified them according to the AI algorithm applied 
to improve IoT security. Akhiat et al. [25] used the KDDCup-99 network 
dataset to compare the performance of IDS-EFS, which is used to identify 
the best-performing subset for attack detection with other feature selection 
methods that are becoming more widely known. The results give better rat-
ing performance metrics of ACC, precision, and recall of around 99.9%.

4.3  PROPOSED INTRUSION DETECTION MODEL

This section presents details of our model architecture, followed by the 
algorithm used to build the model.

4.3.1  Proposed architecture

Our optimized model process is split into three steps (see Figure 4.1).



 A secure approach for next-generation IoT 33

Data pre-processing is applied to the entire database with the aim of 
deleting unused (NaN) and repeated data.

Building the model: reconstruct test and train data. The goal of this part 
is to construct a classification model based on modified data from the data 
pre-processing subsystem as input.

Evaluation performance: to evaluate the effectiveness of our model, we 
must calculate the performance measures, including accuracy, precision, 
recall, and F1-score, based on the confusion matrix.

4.3.2  Description of proposed model

4.3.2.1  Voting classifier

The concept of the voting algorithm classifier is to bring together the pre-
dictions of several machine learning algorithms to obtain an optimal result. 
Voting classifiers come in two types: Hard voting classifier when each 
model contributes to an equal vote for the predicted class. The final class is 
decided by majority vote as shown in Equation 4.1.

 FinalClass Majorityclassamong M x M x M xN{ , , ,� � � � � � � �1 2  (4.1)

where N  is the number of classification models.
Soft voting classifier models weight their votes according to the confi-

dence of their prediction. The votes of more confident models are given 
greater weight in the final decision, as shown in Equation 4.2.

Figure 4.1  Scheme for our IDS model
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�

�
1

�  (4.2)

where ωi  denotes the weight assigned to the model Mi, and P j xi( | ) pres-
ents the probability that the model attributes to the sample x to belong to 
class j .

4.4  EXPERIMENTAL EVALUATION AND RESULTS

In this section, the details of the database used and the results obtained by 
the developed model are presented.

4.4.1  Pre-processing of datasets

4.4.1.1  Pre-processing for NSL-KDD dataset

Digitization: the LabelEncoder method, which we used to digitize the 
nominal-type attributes of the NSL-KDD database. LabelEncoder is 
a utility class to help normalize labels so that they contain only values 
between 0 and n_classes-1.

Normalization: we use the StandardScaler function to normalize data 
values in the interval [0, 1].

Feature selection: the recursive feature elimination (RFE) used to select 
important features.

4.4.1.2  Pre-processing for Edge-IIoT dataset

Encoding (digitization): We use an encoding technique (LabelEncoder) 
to convert categorical variables into numerical values so that they can 
be used.

Class balancing: Random sub-sampling is used, which removes exam-
ples from the majority class and may result in the loss of valuable 
information for a model.

Normalization: Convert columns to the same scale. We require this only 
when the property ranges are different. We used the minimum-to-
maximum scaling method (StandarScaler).

The experimental appraisal of our approach is conducted on multi-core 
IntelTMCoreTMi5 with 12 GM RAM and 64-bit operating system. The 
model is executed using Jupyter and Colab, including driver GPU, Sklearn, 
Pandas, and NumPy libraries.
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4.4.2  Experimental results and discussion

RF outperforms all other algorithms in terms of all performance measures 
in the test dataset. It achieved the utmost accuracy of 99.82%, precision 
of 99.88%, recall of 99.62%, and F1-score 99.78% to detect DoS/DDoS 
attacks. Additionally, when the Probe type attack is detected, the RF model 
gives better results for performance indicators compared to other mod-
els with an accuracy equal to 99.65%, precision 99.63%, recall 99.27%, 
and F1-score 99.59%. Moreover, in the case of detection of U2R attacks, 
the RF model gives a high accuracy of 99.75%, but the three models RF, 
KNN, and SVM give precisions (97.23%, 93.14%, 91.05%, respectively), 
recalls (85.81%, 85.07%, 82.09%, respectively), and F1-score (88.55%, 
87.83%, 84.87%, respectively) which are totally low. On the other hand, 
for R2L attacks, the proposed models give poor results compared to the 
other attacks: RF gives an accuracy of 98.06%, KNN gives an accuracy 
of 96.79%, and SVM gives an accuracy of 96.79%. This shows that our 
model has found it difficult to detect U2R and R2L attacks. To improve 
performance measures, we use ensemble learning to average a RF, KNN, 
and SVM to obtain the best results, as shown in Table 4.1. The idea is to 
take several models, each with its own qualities and shortcomings, and then 
use them together to balance their biases and get a better prediction.

When we compare the performance of the models for the Edge-IIoT data-
base, we find that the model produced acceptable results for the classifica-
tion of attack types. In fact, the RF algorithm achieved the best results with 
an accuracy and recall of 93.63%, while the KNN, SVM, and Voting_Clf 
algorithms posted acceptable accuracies and recalls with values of 73.65%, 
72.61%, and 72.61%, respectively. Furthermore, our model correctly cat-
egorized classes with high precision for RF, KNN, SVM, and Voting_Clf, 
reaching 94.66%, 87.36%, 88.35%, and 88.35%, respectively. It is also 
notable that the accuracy values for SVM and Voting_Clf are always close.

4.5  CONCLUSION AND FUTURE WORK

We have proposed a new intrusion detection system based on supervised 
classification algorithms from machine learning, namely RF, SVM, and 

Table 4.1  Attack performance metrics for the voting classifier

Attacks Accuracy (%) Precision (%) Recall (%) F1-score (%)

DoS 99.78 99.87 99.70 99.75

Probe 99.25 99.74 98.90 98.85

R2L 97.27 95.80 96.31 96.04

U2R 99.74 94.87 86.62 87.64
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KNN, using the NSL-KDD and Edge-IIoT intrusion detection dataset. 
Unfortunately, we use ensemble learning to improve the proposed perfor-
mance measures of our model. The results show that our model detected the 
different types of attack well, with accuracy values for the two databases 
NSL-KDD and Edge-IIoT equal to 99% and 93%, respectively. The model 
performed better, demonstrating its reliability. Our future work will focus 
on the problem of data security using the federated learning method.
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Chapter 5

Efficient ECC-based 
RFID authentication for 
enhanced IoT security

Hind Timouhin, Fatima Amounas, 
and Mohamed Badiy

5.1  INTRODUCTION

In the last few years, the rapid advancement of Internet of Things (IoT) 
technologies, including Big Data analytics, cloud computing, and radio fre-
quency identification (RFID) systems, has sparked transformative changes 
across diverse sectors such as smart homes, health care, and smart cities 
[1–5]. The IoT paradigm signifies a profound shift toward interconnected-
ness, enabling precise communication among myriad devices worldwide. 
Recognized for its efficacy in object recognition, RFID finds extensive 
applications in health care, supply chain management, and e-passports 
[6–8]. Two pivotal components lie at the heart of RFID systems: readers 
and tags. Readers, serving as RFID interrogators, facilitate tag identi-
fication, while tags, acting as transponders, house distinct serial num-
bers scanned and managed by readers. The fundamental components of 
an RFID system are elaborated in [9, 10]. Nevertheless, the widespread 
adoption of RFID technology introduces significant security challenges, 
necessitating robust authentication protocols to counter potential threats. 
Common attack vectors targeting RFID systems include impersonation, 
tracking, and denial-of-service attacks, underscoring the urgent need for 
stringent security measures. Traditionally, authentication protocols in 
RFID systems have relied on hash functions and symmetric key cryptog-
raphy [11–13]. However, with the emergence of elliptic curve cryptogra-
phy (ECC), new opportunities are opening up to develop more efficient 
and secure authentication protocols [14, 15]. ECC, as a public key crypto-
graphic solution, is widely implemented on various devices, ranging from 
mobile phones to smart cards and biometric passports. In this chapter, we 
propose a new scheme leveraging ECC to enhance the security of RFID 
authentication systems. Our suggested protocol ensures security while 
requiring lower computational costs for point multiplication compared to 
existing methods.

The rest of this chapter is arranged as follows: Section 5.2 is dedicated to 
discussing the proposed scheme and its security analysis. This is succeeded 
by Section 5.3, which examines the proposed method in comparison to 
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existing techniques. Finally, the conclusion and future directions are pre-
sented in the final section.

5.2  PROPOSED AUTHENTICATION PROTOCOL

The authentication service plays a critical role in driving recent technologi-
cal progress. Therefore, this chapter aims to develop an efficient authen-
tication scheme utilizing ECC to enhance transmission security in RFID 
systems. The authentication process consists of two stages: the configura-
tion phase and the authentication phase. Figure 5.1 depicts the flowchart 
of the proposed authentication scheme, while Table 5.1 outlines relevant 
notations for the protocol.

5.2.1  Configuration phase

During this phase, two key actions take place: first, the server retains its 
private and public key, while, second, the tag acquires its identifier. The 
parameters of the elliptic curve system {q, n, a, b, P} are stored in the mem-
ory of both the server and the tag. The actions in this stage are delineated 
as follows.

Figure 5.1  Proposed authentication scheme
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Step 1: The server randomly selects Prs  ∈ Zn
*  as its private key and pro-

ceeds to compute its public key as Pqs  = Prs  ∗ P.
Step 2: The server randomly generates a point, denoted as Id , on the 

elliptic curve E, to act as the tag identifier. Subsequently, it plans to 
store this identifier, along with Pqs  and the system parameters, in the 
memory of the tag.

5.2.2  Authentication phase

In this phase, we will offer an in-depth explanation of how both the tag and 
the server authenticate each other via the subsequent steps:

Step 1: The server randomly selects a value s1  ∈Zn
* , calculates C0  = H 

(s1), and subsequently sends it to the tag.
Step 2: After receiving C0 , the tag proceeds to generate a random num-

ber s2  ∈Zn
* , then calculates C1

 = s2  ∗ P, T1  = s2  ∗ Pqs , and AuthT  
= Id  ⨁H (C0

, T1
). Subsequently, it transmits C1  and AuthT  to the 

server.
Step 3: In this step, the server calculates T2  = Prs  ∗ C1 and Id ′ = AuthT

⨁H(C0 , T2 ). To authenticate the tag, it compares Id ′ with Id . If 
they are not equal, it terminates the session. Otherwise, the tag is 
authenticated, and it computes C2  = H(C1 , C0 , Id ) and Auths  = 
H ( Prs  ∗ P ∗ C2 ) to send Auths  to the tag.

Step 4: In this phase, the tag computes C3  = H (C1 , C0 , Id ) and Auths
’ = 

H (C Pqs2* ). It then verifies whether Auths
’  matches the received Auths . 

If they correspond, the server authentication is successful. Otherwise, 
the session is terminated.

Table 5.1  Symbols associated with the proposed protocol

Notation Description

q, n large prime numbers

H a hash function 

F(q) finite field

Zn
*  set of integers

E an elliptic curve over the finite field F(q)

Id the tag identifier with Id and a point in the elliptic curve E

P Pqs rs, the server’s private and public keys 

P a generator of points of order n
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5.2.3  Security analysis

In this section, we conduct a security analysis of the proposed RFID authen-
tication scheme. Our goal is to show how our suggested scheme can achieve 
mutual authentication, confidentiality, anonymity, and data integrity.

• Confidentiality

In the proposed scheme, the tag’s identifier Id  is utilized in the message 
AuthT  = Id  ⨁H (C0 , T1 ). Assuming the adversary gains access to the 
communication messages C0 , C1  and AuthT , as well as the server’s public 
key Pqs , without the random values s1

 and s2
, they would be unable to 

acquire the tag’s identifier Id. Consequently, the proposed scheme effec-
tively maintains the confidentiality of the tag’s identifier.

• Mutual authentication

The attacker lacks the necessary information to generate a legitimate mes-
sage C1

 and AuthT  because they do not possess the tag’s identifier Id  or 
the random values s1  and s2 . Consequently, the server could compute Id ′ 
= AuthT ⨁H (C0 , T2 ) and authenticate the tag by verifying if Id ′ equals 
the one stored in its database. Similarly, the attacker cannot produce a legit-
imate signature C2  because they lack access to the server’s private key Prs ,  
the random value s1 , and the tag’s identifier Id , where �C2  = H (C1 , C0 , 

)Id and Auths  = H ( Prs  ∗ P ∗ C2 ). Consequently, the tag can authenticate 

the server by confirming if Auths
’ = H (C2  ∗ Pqs ) = Auths . Hence, the pro-

posed scheme facilitates mutual authentication.

• Anonymity

The suggested scheme guarantees confidentiality by preventing unauthor-
ized access to the tag’s identifier, even if an attacker intercepts the messages 
exchanged between the tag and the server. Without possessing the random 
values generated by both parties, the attacker cannot obtain the tag’s identi-
fier. Moreover, fresh random values s1  and s2 are independently generated 
by the server and the tag at the outset of each new session, further thwart-
ing the adversary’s ability to determine the tag’s location. Consequently, the 
proposed scheme effectively ensures anonymity for the tag.

• Integrity

Integrity is the assurance that the system and processed data undergo modi-
fication solely through deliberate and legitimate actions. The proposed pro-
tocol not only assures confidentiality and tag anonymity but also upholds 
message integrity during transmission, thwarting any unauthorized 
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alterations. Given that secret values cannot be transmitted directly during 
communication, the protocol safeguards the integrity of transmitted confi-
dential data.

5.3  COMPARATIVE ANALYSIS

To assess performance, we compare our method with recently introduced 
protocols [16–19], focusing on their efficiency and lightweight characteris-
tics through a computational analysis. In an authentication framework, the 
computational overhead is determined by the duration of various opera-
tions involved. Specifically, in the context of ECC, the runtime of an RFID 
authentication protocol is closely tied to the number of elliptic curve sca-
lar multiplication (ECSM) operations. In our investigation, we designate 
“TSMs” as the time needed for doubling point operations. As per [20], the 
time required for a single scalar multiplication is 64 milliseconds. Given that 
the time taken for other operations, such as point addition and XORing, is 
relatively insignificant compared to the execution time of scalar multiplica-
tion, it can be discounted. Table 5.2 provides comparisons of calculation 
costs with relevant works. Furthermore, other review studies [21–24] give 
more details about the other parameters that can be used to check the com-
plexity of an authentication protocol.

5.4  CONCLUSION

The effectiveness of ECC in maintaining data security across various net-
works highlights its importance in ensuring security within the Internet 
of Things (IoT) environment. Medical networks serve as prime examples 
where safeguarding patient information is crucial. In this chapter, we pro-
posed an ECC-based scheme that offers reduced computation and commu-
nication costs as well as decreased execution time for point multiplications 
on elliptic curves compared to alternative protocols. We addressed various 

Table 5.2  A comparative analysis of various schemes

Scheme  Tag Server Total (ms)

Naeem et al. [16] 3 Tpm 3 Tpm
384

Iqbal et al. [17] 1 Tpm 4 Tpm
320

Zheng et al. [18] 4 Tpm 4 Tpm
512

Souhir Gabsi et al. [19] 4 Tpm 4 Tpm
512

Proposed scheme T Tpm h+ 3 T Tpm h+ 3 131



44 Recent advances in Internet of Things security 

security requirements, including data integrity, forward security, mutual 
authentication, confidentiality, anonymity, and availability. This approach 
provides a reasonable level of security for RFID authentication in IoT-based 
networks. In our future research, we aim to enhance our proposed method 
by exploring more advanced techniques with the data, possibly integrating 
complex genetic functions in innovative ways.
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An AI-based embedded 
system for access control 
and absence management

Elmehdi Benmalek, Moussa Zinelabedine, 
Omar Enassiri, Jamal Elmhamdi, 
Abdelilah Jilbab, and Atman Jbari

6.1  INTRODUCTION

Managing student absences is a crucial aspect of administration in educa-
tional establishments. Manual monitoring and traditional absence manage-
ment methods can be tedious, prone to human error, and time-consuming 
for teachers and administrative staff. Fortunately, with advancements in 
artificial intelligence, new opportunities are emerging to significantly 
enhance this process [1–3].

Artificial intelligence provides an opportunity to develop automated sys-
tems capable of efficiently and more accurately managing the absences of 
students. One such modern approach is the utilization of facial recognition 
technology. Facial recognition, as a type of software application, is designed 
to automatically identify individuals based on their facial features [4, 5]. 
Situated within the realm of computer vision, this technology involves the 
ability to recognize a person from an image of their face. The widespread 
adoption of human face recognition (HFR) systems has led to the implemen-
tation of various applications, including those in mobile devices and smart 
home appliances [6]. The use of HFR has notably enhanced the efficiency 
of security systems [7, 8]. Baksshi et al. [9] developed a real-world appli-
cation utilizing a principal component–based face recognition approach. 
Their system was implemented on an Arduino UNO microcontroller with 
a MATLAB-based graphical user interface (GUI). In a similar vein, Sagar 
et al. [10] introduced a smart locking system based on face detection and 
recognition, incorporating the intensity of light during recognition. Kremic, 
Subasi, and Hajdarevic [11] created a mobile application for face recogni-
tion and authentication, specifically designed for access control and preven-
tion of unauthorized mobile device usage. Additionally, Wang et al. [12] 
presented a novel face recognition method by average neighborhood margin 
maximization.

In this chapter, we aim to introduce a secure system that verifies the 
identity of students in educational establishments while also automatically 
recording absences and generating an Excel file reporting the presence, 
absence, and if a foreign person is in the class. This system incorporates 
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a smart lock function, relying on facial recognition technology. The hard-
ware components include a Raspberry Pi 4 board, a basic webcam, a screen, 
a relay, and an electric lock.

6.2  METHODS

6.2.1  Face detection

We will employ a technique introduced in 2005 known as histogram of 
oriented gradients, abbreviated as HOG. The HOG is a feature descriptor 
technique used in computer vision and image processing for object detec-
tion. It was introduced by Navneet Dalal and Bill Triggs [13]. HOG works 
by dividing an image into small, connected regions called cells. For each 
cell, it computes the gradients (intensity changes) and their orientations 
within that region. The gradients provide information about the local struc-
ture of the image. The orientations are then quantized into bins, creating an 
orientation histogram for each cell [14].

6.2.2  Facial recognition

For our project, we sought a face detection method that offers an excellent 
detection rate with minimal runtime for processing each face in an image. 
Additionally, we aimed to avoid complex calculations to align with our 
project requirements. After exploring various methods, our selection grav-
itated toward the fundamental concept of the “face recognition” library 
[15]. This open-source library, written in Python, provides a solution for 
facial recognition through the application of machine learning techniques. 
It significantly simplifies the process of detecting faces in images and imple-
menting facial recognition tasks, such as individual identification and face 
comparison for identity verification [16]. By utilizing this face detector, we 
can benefit from accurate and swift face detection even in diverse condi-
tions without the necessity for intricate calculations [17].

6.3  IMPLEMENTATION AND EXPERIMENTAL RESULTS

The aim of this section is to outline the steps involved in implementing the 
proposed approach within the scope of developing a system for manag-
ing students’ absences and access control. Leveraging our expertise in deep 
learning, we endeavored to design a facial recognition–based system for 
monitoring and recording students’ absences, with the goal of enhancing 
efficiency, accuracy, and speed in this process.
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Utilizing biometric facial identification, the school can monitor students 
who are absent from a class for any reason. The technique employed involves 
facial biometrics using artificial intelligence, specifically deep learning. The 
organogram in Figure 6.1 illustrates the various stages of this process.

6.3.1  Database

To develop an absence management system, we established a database. For 
each enrolled student, an image corresponding to their name was generated 
(Figure 6.2).

What needed to be done was to locate landmarks that refer to specific 
locations on a face used to identify and characterize different facial parts. 
To achieve this objective, we had to develop a shape prediction method that 
identifies essential facial structures. In our code, we planned to implement 

Figure 6.1  Absence management system workflow

Figure 6.2 Database
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a detector integrated into the face_recognition library, which rapidly and 
accurately detects facial landmarks.

6.3.2  Create an encoding of 128 
facial landmark values

The generation of the 128 coding values was accomplished using a pre-
trained Convolutional Neural Network (CNN), predominantly inspired by 
a ResNet-34 model [18, 19]. This model takes inputs of size 150x150x3 and 
represents face images as 128-dimensional vectors [20]. All we needed to 
do was locate the person in our database whose measurements were clos-
est to our test image. We calculated the Euclidean distance and identified 
the image with the shortest distance. The face_recognition.compare_faces 
library uses a default threshold value of 0.6.

6.3.3  Absence management

Figure 6.3 includes all the present students. First, the system identifies all 
the faces and generates the 128 encoding values for each using a pre-trained 
CNN. We attempt to match each face in the input image with a previously 
recognized face in the database. If a match is found, the student’s name is 
automatically added to the attendance list. If the student cannot be found 
in the image, logically their name will be included in the list of absentees. 
If a new face is detected and not included in the database, it is marked as a 
foreigner.

It is evident that the photo was captured by a camera with average image 
quality. The lighting conditions are not optimal. There is variation in the 
distance between the camera and different faces. Even the faces themselves 
do not occupy the same space in the image.

Figure 6.3 Collective photo
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The students’ faces are captured and sent to Raspberry pi module where 
the facial recognition system is integrated. The system analyzes the image 
to identify registered students based on preexisting database records. 
Concurrently, the system also detects any foreign individuals present in the 
classroom. The generated Excel file provides a comprehensive list of stu-
dents, indicating their attendance status as either present or absent (Figure 
6.4). Additionally, a dedicated column in the Excel file highlights any for-
eign persons detected in the captured images, enhancing security measures 
within the classroom.

6.3.4  Access control

The flowchart in Figure 6.5 describes a systematic process from capturing 
images of students at the entrance to providing controlled access to the 
laboratory using facial recognition technology. This innovative approach 
begins with the initial step of capturing images of students as they approach 
the entrance, using high-resolution cameras strategically placed to ensure 
high-quality image input for the facial recognition algorithm.

Once the image has been taken, the facial recognition system processes 
the visual data, extracting distinct facial features such as eye distance, jaw 
shape, and other unique markers. The extracted data is then compared with 
a preexisting database containing facial images of enrolled students. This 
database is regularly updated to reflect any changes, such as new enroll-
ments or adjustments due to altered appearances.

After comparison, if a match is found, the algorithm sends a signal to 
the electronic locking mechanism, which unlocks the door and authorizes 
the person’s access to the laboratory. This not only secures the entry pro-
cess, but also manages the flow of people entering the laboratory, further 
strengthening security measures.

To execute this project, we utilized a set of materials with the following 
key specifications:

Figure 6.4  The attendance sheets. Translated with DeepL .c om (free version)

http://www.DeepL.com
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• Raspberry Pi 4 Model B
• Power supply (USB power supply) with 1A output and a voltage of 5V
• 32 GB “class 10” micro SD card
• Keyboard and mouse
• HDMI cable (if the monitor has an HDMI input)
• Web camera
• Screen
• Relay
• Electric lock

Figure 6.6 shows a practical demonstration of students attempting to 
gain access to the classroom using the advanced facial recognition system 
installed at the entrance. In the diagram, the green boxes indicate students 
who have been recognized by the system, which checks their identity against 
the database of registered persons. This successful recognition triggers the 
system to grant them access, enabling them to enter the classroom seam-
lessly and without delay.

The efficiency of this process is evident when several students pass 
through the entry point, greeted by a rapid validation of the facial rec-
ognition technology. As each recognized student approaches, the system 
instantly compares their facial features with the stored data, confirming 
their enrollment and right to enter the classroom.

Figure 6.5  Access control system workflow
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However, the scenario takes a different turn with one particular student, 
who is represented in a red box. This visual cue indicates that this student 
is not registered in the database, suggesting that he or she has not registered 
for the course, has not presented the required identification documents, or is 
attempting to gain unauthorized access. As a result, the system denies entry 
to this student, underlining the effectiveness of the access control mecha-
nism in preventing unauthorized persons from entering the classroom.

6.4  CONCLUSION

In this study, we addressed the challenges associated with manual manage-
ment of students’ attendance and access to the laboratory, introducing an 
intelligent electronic locking system based on Raspberry Pi 4B. To achieve 
our goal, we developed an automated attendance management and locking 
system employing facial recognition.

We employed deep learning techniques to create an intelligent system 
based on facial recognition, designed to automatically monitor and record 
students’ absences, thereby improving efficiency, accuracy, and speed in the 
process. Simultaneously, the system utilizes its database to control access 
to the laboratory, ensuring the safety of equipment. This system offers the 
following.

Fast access control: The facial recognition algorithm is accurate and 
ideal for institutions with a high volume of people. The proposed technique 
eliminates the need for physical contact with the user, ensuring hygienic 
identification. This is particularly crucial in high-traffic areas where con-
tact with terminals can lead to unwanted infections. Automatic absence 
management: The proposed approach addresses traditional challenges in 
absence management, minimizing human errors and significantly reducing 
the time required for teachers and administrative staff.

Figure 6.6  Identification of each student
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Chapter 7

A new perspective on E-health 
perforated blockchain

An intelligent healthcare 
revolution using trigger-based 
supervised classification

Soumia Benkou, Ahmed Asimi, 
and Mbarek Lahdoud

7.1  INTRODUCTION

E-health technologies have accelerated during recent years both quantita-
tively and qualitatively. This digital transformation highlights new e-health 
tools to ensure good management, remote access to medical records and 
clinical interventions, and, finally, omnipresent control and follow-up of 
patients’ health [1–3]. Everyone must have access to quality health services 
(diagnosis, treatment, follow-up, and prevention) in an efficient, safe, and 
transparent manner [4]. For this, every year technologies try to cover and 
develop hospital services to avoid inefficiency within medical centers due to 
data loss and problems caused by diagnostic errors [5, 6]. In the cloud, par-
ticularly in e-health, patients access their personal information from their 
homes without going to the hospital. In addition, doctors and different enti-
ties can access patient data, and they have a history that can help improve 
diagnoses, treatments, and even daily monitoring via the data availability in 
cloud computing (CC) [7] and the Internet of Medical Things.

Blockchain, as an architecture [8], is a series of blocks that includes a list 
of complete, built chain in which the initial block is known as the genesis 
block and its hash value is entirely zero. Using blockchain in health care 
requires the adaptation of a hybrid blockchain to preserve the confidential-
ity and security of sensitive patient data and to allow access to other public 
data [9].

Blockchain, as a technology [10], guarantees the integrity of patient data 
when information is exchanged between different actors. This advantage 
allows the secure exchange of sensitive data in health care [9].

Among the characteristics of blockchain, we cite:

• Immutability: Blockchain immutability is the characteristic that 
ensures that the data recorded in blocks cannot be altered once it has 
been validated and added to the chain. Once a transaction is recorded 
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in a block and added to the blockchain, it becomes immutable and 
cannot be modified or deleted later.

• Traceability: Storing each transaction by broadcast and validation 
allows blockchain nodes to maintain the order of transactions for 
data traceability. This so-called timestamp property reduces the cost 
of tracking transactions. The traceability of the blockchain system is 
secure and consistent and solves the problem of deduplication.

• Consensus: in blockchain it refers to how different nodes in a net-
work validate transactions and create new distributed ledger blocks 
and the order in which they are recorded. There are several consensus 
mechanisms used in blockchain, each with its advantages and disad-
vantages. We cite the PoW in all the nodes that must validate the new 
block, PoS where the validator nodes are selected and delegated for 
the creation of a new block. In our contribution, we adapt the PoW as 
consensus, because identifying the appropriate Docij doctors for each 
patient requires that all relevant doctors in the hospital contribute. 
This reinforces decentralization, which favors the use of triggers as a 
service because it avoids the centralization of power in the hands of 
specific entities, such as is the case with a PoA consensus.

In our contribution, we adapted the PoW consensus where validators are 
pre-approved trusted entities that are responsible for validating transac-
tions for many reasons: the first is that access control is always essential for 
good data management of patients integrated into the validation of transac-
tions and different operations in the hospital. Also, the absence of solving 
mathematical problems helps in rapid treatment of the patient’s condition 
and decision-making. Also, the validators of the blocks are always known 
and responsible for their decisions and diagnoses, and the security and 
confidentiality of the medical data of any patient remain concerns to be 
guaranteed.

7.2  RELATED WORKS

Numerous academics have discussed auditing the application of blockchain 
to safeguard electronic health records (EHRs), experiencing a critical need 
for a resourceful way of handling EHRs in a way that enables patients 
to share their present and historical health records. For handling security 
[11], truthfulness, and speedy data interchange, a concept prototype named 
“MedRec” employs the differentiating advantages of blockchain [12]. It 
functions on a highly decentralized foundation for storage of data and com-
plaints and provides patients with a comprehensive and ongoing history, 
offering swift and straightforward accessibility to their particular health-
care records through multiple providers and facilities [13].
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Establishing assurance of the provenience of health-care materials to 
establish their authenticity is a critical consideration in both the health care 
and many other industries. With the aid of a blockchain-based system, end 
customers can monitor items from the production site all the way through 
each stage of the entire supply chain, offering them absolute transpar-
ency and complete visibility into what they are purchasing [14]. Clearly, 
addressing these issues is a serious challenge for the manufacturing indus-
try, especially in developing nations where fake prescriptions cause tens 
of thousands of deaths every year [15]. It is becoming even more mission-
critical when it comes to health-care devices, too; it is developing quickly as 
more remote health tracking is being implemented, attracting the interest of 
less scrupulous parties.

An example of this is MediLedger, a well-known blockchain platform that 
supports companies in the global prescription medicine supply chain to verify 
drug legality and expiration deadlines, as well as other vital details [16].

In the paper [9], Benkou et al. introduce a smart conception of health-
care architecture called E-health Blockchain, based on deep reinforcement 
learning. It aims to address the challenge of protecting medical data against 
malicious users by proposing a protocol and architecture that ensures the 
integrity, confidentiality, and privacy of data stored on the Cloud. It combines 
three phases, namely, from the patient’s hospital registration to recovery.

Lahdoud and Asimi [17] propose a system that combines Internet of 
Things (IoT) objects, blockchain technology, and digital twins to monitor 
and anticipate potentially fatal crises resulting from chronic diseases, such 
as diabetes and asthma, and reduce their impact.

Benkou and Asimi [7] discuss the challenges of storing and sharing sen-
sitive electronic health data while ensuring integrity and confidentiality. 
They highlight the need for privacy and security mechanisms in health-care 
systems to preserve data on the Internet. Also, they highlight the poten-
tial of CC to provide a robust infrastructure for health IT (HIT) over the 
Internet. In this paper, the authors present a new data integrity scheme for 
public cloud storage using blockchain as a third-party auditing party.

7.3  OUR CONTRIBUTION

7.3.1  Architecture of our contribution

The entities of our contribution are the patient and the blockchain (Figure 
7.1). We assume a blockchain network in which each member holds an asso-
ciated distributed ledger. Essentially, our contribution establishes a block-
chain network containing TrSi triggers ordered from the sharing of validated 
symptoms by patients. The responsibility TrSi is to trigger an alert for Docij 
doctors to propose their decisions and add it as a new block in the block-
chain after being validated by the PoW consensus.
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7.3.2  Block components

In our contribution, we used a modular architecture in which each block 
is composed of sub-blocks on demand by using perforated cards modified 
dynamically to the size of the blocks. Perforated cards are relevant data 
structures included or excluded depending on the need for each transaction: 
When creating a block for a transaction carried out within the blockchain, 
we include only the perforated card necessary for this transaction. This 
allows us to manage data and organize it in a modular way while saving 
block space and using only the data needed for each transaction (Figure 7.2).

Each block built in our blockchain is composed of:

• The first part: The block header contains:
 a. Version: Indicates which validation rules should apply to a block.
 b. Size: In our contribution, the current block size is dynamically 

determined to track and adjust the block size based on network 
requirements. Also, this integer representing the size is the number 

Figure 7.1  Architecture of our contribution
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of transactions done within the blockchain. Updating the field val-
ues in the header block reflects the new block size. To validate 
blocks, nodes use this value by consensus on block size adjust-
ments to verify that the dynamic size in the block header is equal 
to the actual size of the block. Only one valid and legitimate block 
size is accepted by the network.

 c. Merkle tree root hash: All transactions in a block are associated 
with a hash value calculated by a hashing algorithm to verify the 
integrity of stored data. In our contribution, we adopted Merkle 
tree root hash.

 d. Timestamp: Universal time expressed in seconds.
 e. Nonce: It is an arbitrary number used to communicate crypto-

graphically between users. This value can be identified statically 
or dynamically. In our contribution, this field is composed and 
chosen statically.

 f. Previous block hash: A hash value for identification of the previ-
ous block.

• The second part: Block Body. The Block Body of our contribution con-
sists of perforated cards [12] that organize and group the different parts 
of data in a modular way (patient information, operation details, etc.)

7.3.3  Phases of our contribution

In our contribution, there are two phases: (1) the pre-processing phase, and 
(2) the treatment and follow-up phase. The first begins with the initializa-
tion of the blockchain, where the patient accesses to register or consult his/
her data. The treatment phase, after determining the Trigger TrSi service 
to follow the patient’s case using the proof of work consensus (PoW), a 

Figure 7.2  Block of our contribution
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detailed diagnosis of the patient’s condition will be made to propose and 
validate a medical prescription, the instructions to be managed and the 
analyses to be carried out to verify the patient’s recovery. In the control, 
the doctor in charge verifies the results of tests indicated in the prescription 
to decide whether the patient is cured and should be discharged from the 
hospital or asked for further information as a follow-up by the same doctor 
or by a new alert from Trigger TrSi.

7.4  CONCLUSION

Blockchain technology offers significant improvements in medical data secu-
rity, privacy, and openness. Consensus building improves user confidence 
in the administration and manipulation of private health information. The 
adoption of blockchain technology in electronic health services provides sig-
nificant benefits in terms of medical data security, confidentiality, and trans-
parency when new architectures such as “triggers as a service” are adopted, 
allowing for efficient management of patients, medical operations, and trig-
gers while ensuring data integrity and authenticity through blockchain’s 
immutability. However, there are hurdles and constraints to the use of this 
technology (scalability, secrecy, resource management, etc.). In summary, our 
contribution opens the way to new opportunities and offers a sustainable and 
secure solution and an innovative model in the electronic health sector.
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Chapter 8

Machine learning for security 
boosting in Internet of 
Things environments

Souhayla Dargaoui, Mourade Azrour, Ahmad El 
Allaoui, Azidine Guezzaz, and Said Benkirane

8.1  INTRODUCTION

According to [1], the number of IoT devices will exceed 75 billion by the 
end of 2025. The continuous development of the IoT devices market pushes 
manufacturers to emphasize low cost and user simplicity over security fea-
tures. These reasons, combined with the vulnerability of wireless communi-
cation networks, the high mobility of IoT devices, and the dynamic network 
topology, make ensuring the security of such environments a sophisticated 
task. Recently, several security solutions have been provided to secure IoT 
networks, including authentication and access control, attack detection, 
and malware analysis [2–5]. Nonetheless, these traditional approaches still 
have some gaps to overcome. For this reason, machine learning algorithms 
have been adopted.

Machine learning (ML) is an artificial intelligence technique that solves 
complex tasks by learning from data and experiences without the need for 
human intervention. Generally, machine learning algorithms are used on 
big datasets to extract behavioral models using mathematics. It enables the 
machine’s aptitude to learn without any explicit programming. The models 
generated by ML algorithms are exploited to make future predictions based 
on future data.

Various reviews have been published to cover the utility of machine 
learning in IoT security [6–13]. Hence, Mohy-eddine et al. [14–17] has pro-
posed various intrusion detections based on machine learning and deep 
learning techniques. C. Ni and SC. Li [18] presented a comprehensive study 
that illustrates how ML learns malicious activity detection. The provided 
review compares key approaches in terms of ability and robustness against 
threats. Additionally, F. Alwahedi [19] offered a survey of recent tendencies, 
approaches, and issues in the use of ML for attack detection in IoT networks. 
They conducted a comparative study of existing intrusion detection systems 
based on ML in the IoT field, highlighting the remaining problems. In [20], 
Tahsin et al. afford another survey that presents the different ML algo-
rithms and their utility in addressing attacks and provided a state-of-the-art 
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survey on practicable security approaches for IoT devices. Finally, they con-
sidered the limitations and obstacles of ML security approaches and per-
spective research direction.

The remainder of this chapter is organized as follows: Section 8.2 pro-
vides some possible security attacks in IoT layers. Section 8.3 offers a 
taxonomy of ML algorithms. Section 8.4 presents ML algorithms and 
their use in IoT security. Section 8.5 presents a state-of-art analysis of 
ML-based security solutions. Section 8.6 discusses the ML-based secu-
rity challenges and future research direction. Finally, Section 8.7 con-
cludes the chapter.

8.2  IOT NETWORK ARCHITECTURE 

AND SECURITY ISSUES

Physical layer attacks. The physical or perception layer is the layer that 
collects information about the surrounding environment. It consists 
of IoT sensors and actuators that measure various kinds of param-
eters and enable the identification of other intelligent devices. Physical 
attacks make the attackers able to harm the hardware of IoT and 
access the device’s data. Forged nodes, side channel attack, radiofre-
quency jamming, and tampering attacks are some of the most impor-
tant physical attacks [21, 22].

Network layer attacks. The network layer secures the communication 
between IoT devices. It exploits a variety of communication tech-
nologies. The choice of a protocol to use depends on the size of the 
network, the energy consumption of each device, and the transmis-
sion speed required in each application. The purpose of attacks in 
this layer is to take control of IoT devices with remote access. Traffic 
analysis attacks, man-in-the-middle attacks, and routing attacks are 
among the most significant.

Application layer attacks. The application layer or service layer is respon-
sible for providing services to users. At this level, data from previ-
ous layers is stored, aggregated, filtered, and processed. At the end of 
this processing process, it defines various applications in which the 
Internet of Things can be deployed, for example, smart homes, smart 
cities, and smart health. Attacks in such layers allow the attacker to 
steal critical data, including unauthenticated access to the application 
level of IoT. Denial of service and SQL injection attacks represent a 
significant set of physical attacks.
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8.3  MACHINE LEARNING ALGORITHMS 

CATEGORIZATION

Machine learning (ML) is a discipline that deals with the algorithms used 
to learn based on specific instances. Indeed, machine learning is widely 
recognized as a popular tool used in a whole range of different sectors, 
including fraud detection in finance and banking, prediction of patterns in 
health care, and assisting intelligent devices to handle conversations rapidly 
by means of natural language processing. Basically, machine learning algo-
rithms can be divided into the four following categories [23].

Supervised learning: This ML technique is used when predefined results 
are supposed to be reached from certain inputs. This kind of machine learn-
ing algorithm uses generally labeled datasets, which are divided into train-
ing data and test data. Through the analysis of the training data, supervised 
learning attempts to build a model that can map every input to an output, 
even for new data inputs.

Unsupervised learning: In such kinds of ML algorithms, the data used to 
learn is unlabeled, and the trained model investigates the similarity among 
this data to extract their features.

Semi-supervised learning: The data required in the previous ML tech-
niques is either labeled or unlabeled. In semi-supervised learning, labeled 
and unlabeled data is used to fit the model. From that point, this learning 
technique may be considered a hybridization of supervised and unsuper-
vised learning.

Reinforcement learning: This kind of learning makes machines and 
software agents able to estimate the optimum behavior in such environ-
ments. This technique is built on rewards and punishments. Its purpose is 
to maximize the reward and minimize the penalty using insights from the 
surrounding environment.

8.4  MACHINE LEARNING MECHANISMS 

IN IOT SECURITY APPROACHES

8.4.1  Classification and regression methods

Classification and regression mechanisms are some of the most used ML 
algorithms. Generally, in classification algorithms, the outputs are finite. The 
purpose of the algorithm is to predict a fixed value or class. Consequently, 
in IoT security, they may be used for anomaly detection or even attack clas-
sification. Despite this, the predicted parameters in regression algorithms 
are continuous, and the algorithm is used to find the relationship between a 
dependent parameter and other independent parameters. Thus, in IoT secu-
rity, this kind of algorithm can be used to examine the impact of attacks. 
Support vector machines (SVM) is a classification and regression algorithm 
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that may be used in binary and multiclass contexts. Decision trees are also 
utilized for classification and regression issues. These trees are exploited for 
splitting inputs into various classes based on specific rules. Naive Bayes is 
another classifier for binary and multiclass situations. By searching through 
the available dataset, K-nearest neighbor is employed to associate new data 
points with existing similar points simply and effectively [1, 23, 24].

8.4.2  Clustering methods

Clustering is an unsupervised ML approach that may cluster or establish 
classes of a collection of data points by measuring the similarity and dis-
similarity of these data points. From this standpoint, this approach can 
discover the IoT security data’s hidden shapes and architectures. As a result, 
clustering can perform a substantial task to overcome several security 
obstacles, including intrusion detection and abnormal IoT device behavior 
characterization. K-means is the most used and most well-known clustering 
mechanism, which is classified into unsupervised machine learning algo-
rithms [25].

8.4.3  Dimensionality reduction and 
principal component analysis

Generally, the IoT data quantity and shape may directly impact the secu-
rity solution built on ML algorithms. The diversity in IoT data, which may 
contain less relevant or insignificant information, makes cyberattack pat-
terning a sophisticated task. As a result, security solutions may suffer from 
various obstacles, such as significant computational cost, overfitting, etc. 
Minimizing these issues when building an IoT security model with high-
dimensional data sets can be achieved by selecting an optimal number of 
security features based on their impact or importance. From this stand-
point, characteristic engineering and data dimensionality diminution could 
play a significant role in developing ML-based security models. Principal 
component analysis is an ML technique that engenders new labels that 
gather the most relevant information [25].

8.4.4  Deep neural network approaches

A deep neural network is a feed-forward neural network whereby each 
neuron is linked to the previous and the next layer neurons. Considering 
the term “deep,” such kin of neural networks consist of several layers and 
hold multi-perception levels. Multilayer perceptron, convolutional neural 
networks, and deep belief networks are used to build intrusion detection 
systems and malware detection. In the case of time-dependent attacks, 
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recurrent neural networks have become a significant choice to build secu-
rity models [25].

8.5  LATEST PROPOSED ML-BASED 

SOLUTIONS FOR IOT SECURITY

8.5.1  Authentication

Authentication is an essential security exigency in IoT networks [26]. The 
users may not use IoT applications without being authenticated. If a user 
demands data from an IoT device, the network must verify that it has the 
necessary permissions for the data. If not, the demand will be rejected. In 
[27], S. Chinnaswamy and K. Annapurani used machine learning to pro-
vide a trust aggregation authentication scheme. First, they calculated each 
device’s trust value using its behavior examination and data trust values. 
Then, by evaluating the traffic data, they calculate the trust threshold value 
with a support vector machine (SVM). Finally, in the authentication phase, 
the gateway checks the trust value of the IoT device and omits it in case it 
is less than the threshold. In addition, A.K. Sahu et al. [28] proposed a con-
tinuous authentication framework to authenticate legitimate users inside a 
session. To classify the IoT device behavior, they proposed a long short-term 
memory classification network.

8.5.2  Attack and intrusion detection

Considering the fast development of software, which leads to new cyberat-
tacks and security bugs, the authentication process may not ensure secu-
rity sufficiently. A. Sharifi and S. Goli-Bidgoli [29] presented an ML-based 
attack detection mechanism that may identify the IoT attacks in the fog 
layer and prevent its spread to other segments in the network. In [30], T. 
Gaber et al. offered an IoT intrusion detection system for injection attack 
detection. The examination, using AWID public datasets, illustrates that the 
best classifier to identify injection attacks is decision tree with an accuracy 
of 99% using only eight characteristics selected by the proposed method. In 
2022, T. Saba et al. [31] provided another anomaly based intrusion detec-
tion approach built on CNN. They illustrate the capability of the suggested 
method to identify all unusual traffic behavior and intrusions. Using the 
NID dataset, the proposed model achieved an accuracy of 99.51%, while, 
using the BoT-IoT dataset it achieved only 92.85%.

8.5.3  Malware analysis

Malware is a danger that arises according to several vulnerabilities linked 
to authentication, authorization, or even physical device tempering. 
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The literature identifies generic malware such as spyware, ransomware, 
adware, trojan, and virus. However, various optimized classes are devel-
oped to target IoT devices, including WanaCry, Cryptlocker, Mirai, and 
Stuxnet. In [32], V. Rey et al. proposed a federated learning-based frame-
work for malware-affecting device detection. To examine the provided 
framework, the authors used the N-BaIoT dataset that models network 
traffic in case IoT devices are affected by malware. Additionally, SH. 
Khan et al. [33] presented a deep CNN-based framework for detecting 
malware. To test the framework and evaluate the proposed approach 
against current mechanisms, the IOT_Malware dataset has been used. 
As a result, the proposed framework demonstrates its robustness and 
efficiency in timely malware detection with an accuracy of 98.50% and 
a precision of 98.42%.

8.6  CHALLENGES AND FUTURE VISION

The deployment of machine learning in IoT security leads to various 
important challenges. The quantity of the data and its diversity in terms 
of features and velocity give rise to various challenges to conventional 
approaches, including data collection, training datasets construction, etc. 
Furthermore, the use of confidential user data for ML algorithm train-
ing leads to various privacy issues. In addition, the heterogeneity in IoT 
appliances, combining several structures, conventions, and operating sys-
tems, constitutes another main obstacle. This diversity complicates the 
development of universal machine learning approaches, as each appliance 
can demand an adjusted mechanism. Moreover, the limited computation 
power of IoT devices and the intensive nature of ML algorithms leads to 
several issues.

A large language model (LLM) is a special kind of generative artificial 
intelligence (AI) that may create content, especially text-based material 
interpreting a huge amount of data. The IoT security enabled by LLM, 
and generative AI undertakes more security and intelligence. To determine 
strange behavior and detect cyber threats, these generative models may 
explore unstructured data generated by the diverse IoT devices. They also 
improve lightweight encryption approaches for the authentication of power-
limited IoT devices. Additionally, combining LLMs and biometric mecha-
nisms, including voice recognition, may enhance user authentication and 
enable automated access control. Further, exploiting the ability to engender 
realistic phishing emails and social engineering attacks, generative AI may 
improve penetration testing in IoT systems.
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8.7  CONCLUSION

IoT security plays a vital role in its commercialization and deployment. 
Considering the diversity of disciplines and technologies covered by the 
IoT concept, ensuring IoT network security can be complex. Further, the 
dynamic nature of IoT networks presents multiple challenges for traditional 
security and privacy solutions. Advancements in ML have enabled the cre-
ation of numerous powerful analytical techniques that can be utilized to 
enhance the security of IoT. In this chapter, first, we presented security 
issues in each IoT layer. Then, we discussed the different ML mechanisms 
and their utility in IoT security enhancement. Subsequently, we reviewed 
the latest proposed ML-based solutions for IoT security. Finally, we pre-
sented some ML-based IoT security challenges and provided a future vision.
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Chapter 9

Combined machine learning 
for anomaly detection in 
IoT aggregator RPi

Maryam Douiba, Said Benkirane, Azidine 
Guezzaz, and Mourade Azrour

9.1  INTRODUCTION

IoT security presents a challenge because of the complexity of the systems 
and the heterogeneity of devices used in this environment. Hence, it has 
received increased attention from academic researchers in recent years [1, 3, 
6]. This chapter aims to overcome some limitations in the intrusion detec-
tion systems (IDSs), such as colossal volume, quality improvement, time 
performance, and detection rate, as well as reduce false alarms by assem-
bling the best ML and enhancing feature engineering. The main goal is to 
create an optimized IDS to improve the security of the RPi aggregator. We 
are profiting from the benefits of two powerful MLs to implement a power-
ful IDS integrated into the new fog computing paradigm. We are also opti-
mizing minority class detection to ameliorate detection. Our contributions 
are outlined in three points: First, we proposed an ensemble learning that 
uses the scores of the unsupervised model iForest in the supervised model 
GB and DT as features to enhance normal traffic detection and deal with 
zero-day attacks on the RPi 4 aggregator. Second, we incorporate a cate-
gorical encoder and feature importance to deal with heterogeneous and cat-
egorical data. The main goal is to ameliorate detection rate, accuracy, and 
time performance and reduce false alarms to eliminate zero-day attacks. 
Third, we provide a comparative study of the model applied to imbalanced 
data, which has a more significant number of attacks than benign ones 
like BoT-IoT, CICIoT2023, and Edge-IIoT; this contributes to the potential 
resolution of the imbalanced data. The results of this experiment show that 
our model works effectively and generates strange predictions with more 
than 99.99% accuracy. The chapter is organized as follows. In Section 9.2 
we present an overview of IoT security, architectures, and the related devel-
opments in IDS techniques that use ML and DL. In Section 9.3 we outline 
the key phases of the proposed architecture and solutions for validating 
our IDS technique. In Section 9.4 we discuss the experimental assessment 
and outcomes. Finally, the chapter concludes with a conclusion and further 
research.
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9.2  RELATED WORKS

In the literature study, several authors have looked to improve IDS to pro-
tect the IoT environment [10, 11, 14], [23–38]. In light of this, Misra et 
al. [17] and Kasinathan et al. [18] provided security architecture for iden-
tifying DDoS attacks in IoT. Sonar et al. [19] investigated the efficacy of 
deploying ML and DL algorithms to enhance IDS security in 2016 to secure 
IoT systems from DDoS attacks. Following the same strategy, a convincing 
experimental study of anomaly detection based on the GB approach was 
proposed by Tama et al. [15]. The same year, Hodo et al. [13] proposed an 
ANN IDS model to classify threat analysis of IoT networks. This model’s 
evaluation achieves more significant than 99% accuracy. In 2017, a basis 
for DL developing machine intelligence toward intelligent network traffic 
was presented by Fadlullah et al. [9]. A distributed attack DL detection 
method for IoT security was simultaneously developed in 2017 by Diro et 
al. [5]. The model’s accuracy increased from 96% to over 99%, making 
it more accurate at detecting assaults than centralized ones. In 2018, an 
IDS architecture of cognitive fog computing for IoT systems was created 
by Prabavathy et al. [20]. The OS-ELM method implements the suggested 
architecture at distributed fog nodes, achieving 97.36% accuracy with a 
0.37% false alarm. After a year, Verma et al. [7] compared and presented 
the results of several supervised ML algorithms to choose a viable classifier 
model for IoT security. They suggested an IDS model based on ensemble 
learning and demonstrated that GBM has the highest sensitivity, 99.53%. 
Gu et al. [4] suggested an effective method of detection constructed using an 
SVM classifier and feature embedding using the naive Bayes (NB) algorithm 
in 2020. Furthermore, in the same year, Chaabouni et al. [8] developed a 
OneM2M IDS for IoT security based on edge ML. The investigational study 
results revealed that the detection rate is 93.80%, the accuracy is 92.32%, 
the precision is 92.95%, the FPR is 1.53%, and the CPU training time is 
9280ms. Furthermore, according to Jin et al. [21], LightGBM delivers good 
results, with 99.6% TPR, 0.2% FPR, and 99.7% accuracy. Al-kasassbeh 
et al. [22] confirmed this and demonstrated that the LightGBM algorithm 
obtained about 100% accuracy, demonstrating the superiority of this ML 
technique over DL strategies. Ullah et al. [12] proposed a deep learning 
model IDS for binary and multicast classifications in 2021 using multiple 
layers of CNN, with a minimum detection rate of roughly 99.7%. In the 
same year, Dhanke et al. [2] suggested a machine learning–based IoT for 
delivering an IDS for security, and their results demonstrate an 85% accu-
racy rate. Sohail et al. [1] proposed a hybrid intelligent IDS using machine 
learning and metaheuristic algorithms for IoT-based health care. Based on 
the accuracy, execution time, memory usage, and CPU utilization, perfor-
mance evaluation indicates a good accuracy of 99.88%, 86.40%, 95.39%, 
96.90%, and 100% for DoS, U2R, R2L, Probe, and Normal classes using 
eight to ten features. In our previous research, we used the implementation 
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of GB employing binary DT as fundamental predictors [6]; this method 
applies the same splitting criterion on each tree level, making it less prone to 
overfitting and faster at test time [16]. We tested this combination on CPU 
and GPU, and the experimental results proved that GPU-based gives the 
best performance result in record time [6].

9.3  OPTIMIZED INTRUSION DETECTION MODEL

Our contribution aims to develop and implement an improved IDS to 
increase detection rate, accuracy, and response time. Figure 9.1 shows the 
suggested model’s strategy. The objective is to validate an optimized IDS 
built using an optimized ensemble learning that uses the prediction score of 
iForest in the supervised model GBDT as features to enhance the detection 
of normal traffic and deal with zero-day attacks on the RPi 4. Our opti-
mized model process is divided into five essential parts:

Part 1: Data preparation. Data has been loaded and prepared. Then, we 
used catboostEncoder to transform all categorical data. The categori-
cal values Xi are then encoded on the whole dataset, greedily using the 
target statistic to reduce overfitting. catBoost suggests that multiple 
random permutations should be generated first to encode the categori-
cal features. The outcome is only the average of the several encodings 
[16] using the following formula to convert all categorical feature val-

ues to numerical form [16]: Avg Enconer
Sum Target prior

Sum Features
�

�

�1
 With 

SumTarget is the total number of target label values 1 for objects with 
the present categorized feature value throughout the dataset, prior 
is the preliminary value of the numerator. The starting parameters 
define it. SumFeatures is the sum of objects with categorical feature 

Figure 9.1 IDS architecture
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values that match the present one. Following that, all features are 
transformed.

Part 2: Extraction of score detection using iForest. We defined and pre-
pared feature vectors and then used iForests to detect anomalies, treat-
ing them as rare data points, making them easier to isolate. The anomaly 
scores generated are recovered as a new feature. This score for a sample 

X1....n  is calculated as follows [3]: S X

E h x

C n� � �
� �� �
� �2 , where C(n) repre-

sents the expected value of the average height for a tree that contains 
n samples. represents the expected value of the mean height for a tree 
containing n samples, h(x,T) being the height of the data sample X in 
tree T, and E(⋅) being the expectation operator calculated over all trees 
in the forest. These score values generally in the interval [-1,1], where 
values closer to 1 indicate more abnormal samples and values closer to 
-1 indicate more normal samples. This provided us with a critical view 
of the traffic pattern we used; it is efficient for high-dimensional data 
and can work quickly even with large amounts of data [3].

Part 3: Extraction of important features. We identified the features with 
the most significant impact on our model’s predictions by training all 
data on the catboost model to calculate each feature’s effect on the 
data division, considering the information gained from each division. 
We then extracted the features that contributed the most to reducing 
the loss in constructing the DT.

Part 4: Training and model building. The datasets are constructed with 
70% train and 30% test using important features and iForest score 
detection. We trained the model using GBDT on catboost; then, based 
on the training results, we optimized the hyperparameter to choose 
the excellent performance that gives the best results. The selection is 
then used to classify the problem.

Part 5: Intrusion detection. The building model may predict the normal 
traffic as a positive. We evaluated and validated the model based on 
accuracy, recall, precision, FP, FN, and f1-score obtained from the 
confusion matrix.

9.4  EXPERIMENTAL ANALYSIS AND RESULTS

We carried out the experimental evaluation of our optimized model on 
RPi4 Model B, Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz, 
with wireless connection 2.4 GHz and 5.0 GHz. We built the model with 
Jupyter Lab with Python 3.9.7 and catboost 1.0.3, which includes the pan-
das, NumPy, and sklearn. The evaluation of IDS is a crucial challenge. For 
this reason, we have chosen to perform the tests on three datasets, as shown 
in Table 9.1,   to guarantee that our model tested ideal and to ensure the 
stability of the model and its efficiency.
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The iForest randomly selects a splitting threshold for each DT in the set 
and calculates the depth of each data point in the tree. Based on this calcu-
lation, an anomaly score is then assigned to each data point, as shown in 
Figure 9.2.

The important features are then extracted, and catBoost employs cat-
egorical feature combinations as additional features to capture high-level 
dependencies. The algorithm can handle all possible combinations of cat-
egorical features in the dataset. To achieve this, all the potential splits of the 
features in the data are first calculated, and then the one that most improves 
the loss function is selected. Once the initial split has been chosen and fixed, 
the next split in the tree is selected greedily, considering the first one [6, 16]. 
This process continues until the entire tree is constructed and important 
features are identified. The iForest score obtained is then added. We have 
grouped them in Table 9.2. As shown in Table 9.3, we effectively reduced 
FP and FN by utilizing only five features and the iForest score, resulting in 
favorable outcomes. As we can see, the model has learned to detect abnor-
mal traffic based on the five important features in Table 9.2 using the com-
bination of unsupervised scores in the supervised model. It is observed that 
the time required to classify recording as an attack or normal using the 

Table 9.1 Data reconstructions

Dataset
Training 
(70%) Testing (30%)

Data

ALL Normale Attacks

Edge-IIoT 110460 47340 157800 24301 133499

CICIoT2023 674641 289132 963773 22484 941289

BoT-IoT 2 567 965 1100557 3668522 477 3668045

Figure 9.2  iForest score data distribution
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selected scores and combined features is less than the time required to clas-
sify recording using all features. The accuracy of detecting attacks with our 
model using the optimization process regularly increases as the recorded 
time decreases. Moreover, selecting important features allows us to reduce 
processing and detection time and deal with the massive volume of samples 
like 3668522 in BoT-IoT. In addition, the experimental study on three data 
proved the stability of the model and the effectiveness of this solution.

9.5  CONCLUSION AND FUTURE WORK

This research provided an optimized intrusion detection model for IoT 
security based on an anomaly detection technique to increase IDS accu-
racy and time performance. Our model has an excellent and reliable perfor-
mance, as shown by the outcomes of the experiments on various datasets 
and the performance comparisons made. For future work, we want to test 
our model on real traffic.
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Chapter 10

Efficient IoT intrusion 
detection with XGBoost 
and feature selection

Kamal Bella, Mouaad Mohy-Eddine, Azidine 
Guezzaz, Said Benkirane, and Mourade Azrour

10.1  INTRODUCTION

The Internet of Things (IoT) revolutionizes the way we interact with the 
world around us by connecting everyday objects to the Internet [1]. From 
smart homes to industrial automation, IoT has permeated various sectors, 
making life more convenient and efficient. However, this increased con-
nectivity also presents significant security challenges [2]. IoT devices, often 
lacking robust security measures, have become attractive targets for cyber-
criminals [3]. They can exploit vulnerabilities in these devices to launch 
large-scale attacks, steal sensitive data, or gain unauthorized control [4]. 
Furthermore, the heterogeneous nature of IoT devices adds complexity to 
the security landscape, as different devices may require different security 
protocols. Thus, ensuring the security of IoT environments is a daunting 
task, necessitating innovative solutions like advanced intrusion detection 
systems (IDS) [5].

IDS play an indispensable role in securing IoT devices. As IoT devices 
become increasingly integrated into our daily lives, the potential impact of 
cyberattacks grows proportionally. These devices often lack robust built-
in security measures, making them prime targets for cybercriminals. IDS 
serve as a crucial line of defense by monitoring network traffic for sus-
picious activities or policy violations and alerting system administrators 
[6]. By leveraging advanced machine learning techniques, IDS can improve 
their detection accuracy and efficiency, proactively protecting IoT devices 
from a wide range of cyber threats [7].

This chapter introduces a new intrusion detection method that utilizes 
advanced machine learning techniques to boost system efficiency and effec-
tiveness [8]. The method begins by using random forest feature importance 
(RFFI) for feature ranking, enhancing model efficiency by eliminating less 
significant features [9]. Then, the XGBoost machine learning algorithm 
is applied to train the intrusion detection model. To further optimize the 
model, a recursive feature elimination (RFE) process is implemented, pro-
gressively removing one feature at a time until only one remains. The model 
that performs best with the fewest features is selected [10].
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This chapter is organized as follows: Section 10.2 provides comprehen-
sive background information on IoT, security, and IDS. In Section 10.3, 
the proposed XGBoost-based IDS model is detailed. Experimental results 
are presented in Section 10.4, followed by a conclusion and suggestions for 
future work in Section 10.5.

10.2  BACKGROUND AND RELATED WORKS

10.2.1  Background

IoT is a network of sensor-equipped objects sharing data over the Internet. 
It includes everyday items and industrial tools [8]. The architecture of IoT 
consists of sensors/devices, connectivity, data processing, and a user inter-
face [9]. While IoT revolutionizes efficiency and connectivity, it also poses 
significant security challenges. The increasing number of connected devices 
broadens the risk of cyber threats. IoT devices often lack strong security 
measures, making a unified security protocol hard to apply. Thus, IoT secu-
rity involves protecting the devices and their networks, presenting a com-
plex challenge to information security professionals [10].

IDS are a critical component in the security architecture for IoT envi-
ronments. With the ever-increasing proliferation of IoT devices in various 
sectors, ranging from health care to manufacturing and home automation, 
cyber threats have also escalated [11]. As these devices often lack in-built 
robust security measures, IDS for IoT have become crucial in mitigating 
cyberattacks [12].

IDS work by monitoring network traffic, identifying suspicious activi-
ties or policy violations and alerting system administrators about potential 
threats [13]. They can be categorized into two main types: network intru-
sion detection systems (NIDS) and host intrusion detection systems (HIDS). 
NIDS monitor network traffic for all devices on a network, while HIDS 
monitor activities on a specific device [14].

The effectiveness of IDS in IoT heavily relies on their ability to adapt to 
the dynamic nature of IoT environments and the variety of devices involved 
[15]. This is where machine learning techniques come into play. Machine 
learning algorithms can enhance the accuracy and efficiency of these sys-
tems by learning from past traffic data and improving their threat detection 
capabilities over time [16].

The model presented in this chapter uses XGBoost as our machine learn-
ing algorithm due to its high performance and efficiency in handling large 
datasets. XGBoost, which stands for eXtreme Gradient Boosting, is an 
algorithm known for its speed and performance. It has gained popular-
ity for its use in winning solutions in machine learning competitions due 
to its ability to handle complex data structures and produce highly accu-
rate predictive models. Furthermore, we incorporate feature selection in 
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our methodology to enhance the efficiency of our model. Feature selection 
allows us to identify and utilize the most relevant features, reducing the 
computational cost, improving model performance, and providing better 
insights into the underlying process that generated the data.

10.2.2  Related works

Many intrusion detection methods have been proposed in the literature to 
combat computer security threats [17–40]. They can be broadly classified 
into two categories: signature-based intrusion detection systems (SIDS) and 
anomaly-based intrusion detection systems (AIDS). This section reviews 
prior research on machine learning–based IDS in IoT security, providing 
context for our approach .

Khoei et al. [17] compared three ensemble learning techniques (bagging-
based, boosting-based, and stacking-based) and three traditional machine 
learning techniques (K-nearest neighbor, decision tree, and naive Bayes) for 
intrusion detection systems. They used the CICDDos 2019 benchmark for 
training and evaluation. The results showed that the stacking-based ensem-
ble learning techniques performed best across all evaluation metrics.

Ennaji et al. [18] developed an IDS using machine learning to cope with 
rising cyber threats. Leveraging ensemble learning techniques and selecting 
ten critical features, they used various machine learning classifiers to design 
five different models. They conducted experiments on the NSL-KDD data-
set. The results showed robust performance and strong network security, 
with accuracy exceeding 99% for all models.

Abirami et al. [19] developed a machine learning–based IDS, LSSVM-
IDS, achieving 95% accuracy on datasets like KDD Cup 99, NSK-KDD, 
and Kyoto 2006+. They used feature selection for data dimensionality 
reduction and maintained accuracy with an ensemble learning algorithm 
on the UNSW-NB15 dataset.

Verma and Ranga [20] proposed an ensemble learning–based network 
IDS (ELNIDS) for detecting IoT network routing attacks. Four ensem-
ble machine learning classifiers were used: Boosted Trees, Bagged Trees, 
Subspace Discriminant, and RUSBoosted Trees. The RPL-NIDDS17 data-
set was tested, containing various routing attacks. Boosted Trees had the 
highest accuracy (94.5%), Subspace Discriminant the lowest (77.8%). 
RUSBoosted Trees achieved the highest area under ROC value (0.98). All 
classifiers performed adequately.

Mohy-eddine et al. [21] have suggested a useful IDS system incorporat-
ing machine learning using K-NN, employing a number of distinct feature 
extraction approaches to pick ten valuable attributes. Their new approach 
considerably enhanced the performance, decreased the time taken for pre-
diction, and showed that the selection of features actually does help to 
boost the overall performance of the IDS. The results of their work were 
assessed by means of the Bot-IoT dataset.
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Attou et al. [22] used a combined graphical visualization solution and ran-
dom forest (RF) for cloud computing security in order to identify intrusions by 
means of a reduced set of two features. RF performed better than DNN, decision 
trees (DT), and SVM in predicting and classifying attack types. Nevertheless, 
the recall performance using NSL-KDD data remains suboptimal.

Mohy-eddine et al. [23] designed a machine learning–assisted IDS for the 
security of Industrial IoT (IIoT) edge computing. They employed Pearson’s 
correlation coefficient (PCC) and isolation forest (IF) methods for both 
computing efficiency and training. Feature engineering enhanced model 
accuracy and detection rates, achieving a 100% detection rate and 99.99% 
accuracy on the Bot-IoT dataset. Compared to other models, that approach 
showed some distinct advantages.

Roy et al. [24] introduced a two-layer hierarchical IDS model for IoT 
networks, powered by the Fog-Cloud backbone. The fog layer employs a 
direct neural network (FNN) along with extra capability from a stored 
autoencoder to provide bitwise clustering. On the other hand, the cloud 
layer utilizes a more complex neural network to manage multiclass catego-
rization. Such a model detects various kinds of intrusions successfully and 
improves the accuracy of previous IDS solutions.

Attou et al. [25] has developed a novel intrusion detection solution for a cloud 
application by combining machine learning and deep learning algorithms. 
They have used RF for feature extraction and radial basis function neural net-
work (RBFNN) technology for intrusion detection. This approach achieved 
high accuracy of over 94% and false-negative rates of less than 0.0831%, dem-
onstrating the model’s ability to accurately identify and classify intrusions.

Mohy-Eddine et al. [26] presented an IDS for IIoT networks by means 
of Random Forest and PCC to classify and choose features accordingly. 
In addition, the authors used IF for outlier identification. Both PCC and 
IF were used interchangeably. The result was an effective resolution of 
the imbalance in the Bot-IoT dataset, as well as strong outcomes on the 
NF-UNSW-NB15-v2 dataset.

10.3  PROPOSED APPROACH

Our approach to enhancing intrusion detection in IoT environments relies 
on advanced machine learning techniques for optimal efficiency and accu-
racy, integrating RFFI, XGBoost, and RFE.

First, the system uses RFFI to rank dataset features by importance, cru-
cial for efficient model refinement. This step allows for the removal of less 
important features, reducing computational cost and complexity.

Next, we employ XGBoost, a highly efficient algorithm known for its 
speed and performance, to train our intrusion detection model. XGBoost is 
particularly suited to our purposes due to its ability to handle complex data 
structures and produce highly accurate predictive models.
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Finally, we implement RFE to further optimize the model. This method 
involves progressively removing less important features until only the most 
important one remains. The model selected is based on performance with 
the fewest features.

Figure 10.1 visually illustrates this process, starting with dataset feature 
selection using RFFI. The ranked list of features eliminates less significant 
ones, and the remaining features are put into the XGBoost algorithm for 
model training. After training, the model undergoes RFE for further opti-
mization, resulting in the final, optimized intrusion detection model.

This approach ensures an efficient and effective intrusion detection sys-
tem, accurately identifying potential threats in IoT environments.

10.4  EXPERIMENTAL STUDY

This section outlines our intrusion detection system testing setup and 
results. We detail the dataset used and evaluation metrics employed.

10.4.1  NSL-KDD dataset

The NSL-KDD dataset, an enhanced version of KDD Cup 99, is widely 
used for IDS evaluation. It includes diverse network traffic and simulated 
attacks like DoS, Probe, U2R, and R2L. With 140,000+ records and 41 fea-
tures, it is robust and varied, making it an ideal benchmark for our model.

10.4.2  Evaluation metrics

We assessed our system using key performance metrics: accuracy, precision, 
true positive rate, false positive rate, and F1 score. Accuracy serves as a universal 

Figure 10.1 Proposed approach
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benchmark, facilitating comparison with other IDS and datasets. In this chap-
ter, we use accuracy to compare our results with existing IDS literature.
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10.4.3  Discussion of results

In this section, we discuss the results of our proposed approach, analyzing 
its effectiveness and efficiency in detecting intrusions. We combine RFFI, 
XGBoost, and RFE for a sophisticated intrusion detection system.

The experimental study evaluated our system using the NSL-KDD data-
set in a controlled environment. We used accuracy, precision, true positive 
rate, false positive rate, and the F1 score as evaluation metrics.

Figure 10.2 shows the correlation between the number of features used 
and the system’s accuracy. Initially trained on all 41 features, the system’s 
accuracy increases with more features but saturates at around ten features.

Figure 10.2  The evolution of accuracy with the increase of the number of features
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This suggests that only the top ten features are necessary for optimal 
performance, reducing unnecessary complexity and computational cost. 
Feature ranking and elimination enhance system efficiency without com-
promising effectiveness.

In conclusion, our approach using RFFI, XGBoost, and RFE proves effec-
tive for intrusion detection in IoT environments. Future work could explore 
different machine learning algorithms or feature selection techniques for 
further performance improvement.

As depicted in Figure 10.2, our model’s accuracy increases as the num-
ber of features increases until it reaches a saturation point at around ten 
features. Beyond this, the inclusion of additional features does not signifi-
cantly improve accuracy, implying that these ten most significant features 
are sufficient for optimal performance. Therefore, we chose these ten fea-
tures as the sweet spot for our model. This approach reduces unnecessary 
complexity and computational cost while maintaining high detection effi-
ciency. Presented in Table 10.1 is the confusion matrix and evaluation for 
the model trained with these ten selected features in Table 10.2.

The system’s performance was evaluated using various metrics, such as 
accuracy, precision, true positive rate, false positive rate, and the F1 score. 
The accuracy of the model was an impressive 99.47%, indicating that it cor-
rectly predicted the majority of the instances. The precision of the model, 
which measures the proportion of true positive observations to the total 
predicted positives, was slightly higher at 99.58%. This suggests that the 
model was very effective at correctly identifying positive instances.

The true positive rate, also known as sensitivity or recall, was 99.36%. 
This rate measures the proportion of actual positives that were cor-
rectly identified. Therefore, the model was very good at detecting posi-
tive instances. The false positive rate, which measures the proportion of 
negatives that were incorrectly identified as positive, was extremely low at 
0.41%. This indicates that the model very rarely made the mistake of iden-
tifying a negative instance as positive.

The F1 score, which is a measure of a test’s accuracy that considers both 
the precision and the recall, was 99.47%. This high score suggests that the 

Table 10.1  Confusion matrix for the 20 features model

TP FP TN FN

99.36% 0.41% 99.58% 0.63%

Table 10.2  XGBoost model evaluation using the ten best features

Accuracy Precision TPR FPR F1Score

99.47% 99.58% 99.36% 0.41% 99.47%
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model was very good at identifying positive instances without producing 
many false positives or false negatives.

Overall, the results of the experimental study reveal a highly efficient and 
effective intrusion detection system. The integration of RFFI, XGBoost, 
and RFE in the proposed model demonstrates a significant enhancement in 
intrusion detection in IoT environments. The model’s high accuracy, preci-
sion, and recall, along with a low false positive rate, indicate its capabil-
ity to identify potential threats accurately. However, future research could 
explore the impact of using different machine learning algorithms or feature 
selection techniques on the performance of the intrusion detection system.

10.5  CONCLUSION AND FUTURE WORKS

In conclusion, the proposed intrusion detection system, integrating random 
forest feature importance (RFFI), XGBoost, and recursive feature elimi-
nation (RFE), has been demonstrated to be highly effective in detecting 
intrusions in IoT environments. The system uses RFFI to rank features, 
subsequently eliminating less significant features to improve efficiency. The 
XGBoost algorithm is then utilized to train the model on the most signifi-
cant features. Finally, the RFE process optimizes the model by progressively 
eliminating features until only the most important ones remain.

Through this methodology, the system achieved an impressive accuracy 
of 99.47% in intrusion detection, using only 10 out of the initial 41 features 
in the NSL-KDD dataset. These results attest to the effectiveness and effi-
ciency of the proposed system and its potential to significantly enhance the 
security of IoT environments.

Looking ahead, future research may explore the integration of other machine 
learning algorithms or feature selection techniques to further optimize the 
system. Assessing the model’s performance on other datasets, and against dif-
ferent types of cyberattacks, could also provide valuable insights for its con-
tinuous improvement. Furthermore, as the IoT landscape evolves, adapting the 
model to incorporate emerging threat patterns and unique characteristics of 
new IoT devices would be an important direction for future work.
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A monitoring system with 
deep learning for IoT smart 
environments security

Mouaad Mohy-eddine, Azidine Guezzaz, Said 
Benkirane, Mourade Azrour, and Kamal Bella

11.1  INTRODUCTION

The rise of the Internet of Things (IoT) has sparked a major shift in vari-
ous fields, like making cities smarter, improving farming with agriculture 
4.0 [1, 2], managing energy better with smart grids [3], and transforming 
industries with the Industrial IoT (IIoT) [4]. However, as more IoT devices 
connect, security has become a big concern [5]. So many devices are out 
there now that hackers can exploit weaknesses in them, creating an urgent 
need for better security [6]. Traditional security tools like firewalls and 
antivirus software are struggling to keep up, especially against new, sophis-
ticated attacks [7]. To tackle these threats, a move has been made toward 
more advanced intrusion detection systems (IDS), particularly anomaly-
based systems [8], which use machine learning (ML) and deep learning 
(DL) to spot unusual activities and protect data.

Furthermore, the desire to improve security in the IoT ecosystem has 
prompted players to work together. Industry leaders, researchers, and poli-
ticians are working together to establish standardized security protocols, 
increase information exchange, and develop new risk-mitigation solutions 
[1, 2]. As the Internet of Things penetrates every area of our lives, pro-
tecting its security becomes increasingly important. By embracing the lat-
est innovations and encouraging collaboration, we can safely navigate the 
growing danger landscape and realize the full promise of the IoT [7].

Our study focuses on enhancing security in the realm of the IoT by devel-
oping a network IDS (NIDS). Our approach utilizes the chi-square test (chi-
2) to select relevant features, thereby boosting system efficiency without 
compromising security. We employ an autoencoder for outlier detection to 
mitigate its potential negative impact on system performance, and a radial 
basis function neural network (RBFNN) for classifying events as benign or 
potential attacks. To assess the effectiveness of our model, we utilized the 
NF-ToN-IoT and NF-Bot-IoT datasets. Our findings demonstrate the effec-
tiveness of our proposed model.

The chapter is structured as follows: Section 11.2 provides a review of 
IoT and IDS backgrounds, highlighting relevant previous works. Section 
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11.3 explains the architecture and methodology of our model, incorpo-
rating RBFNN, WOA, and autoencoder techniques. In Section 11.4, we 
meticulously present and evaluate the results, examining the model’s abil-
ity to enhance IoT security. Finally, the conclusion summarizes the study’s 
findings and emphasizes its contributions to IoT security.

11.2  BACKGROUND AND RELATED WORKS

IoT encompasses a myriad of interconnected objects endowed with sen-
sors, software, and diverse technologies, enabling seamless data commu-
nication and autonomous interaction within their surroundings [9]. These 
devices range from common household appliances and wearable devices 
to sophisticated industrial machinery, forming an extensive network for 
data collection and exchange [10]. The applications of IoT are far-reach-
ing, spanning domains such as daily living, health care, industry, urban 
governance, and agriculture. In the realm of smart home automation, IoT 
technologies streamline tasks and promote energy conservation, foster-
ing convenience and sustainability [9]. The applications of IoT span vari-
ous domains, enhancing daily living, health care, industrial operations, 
urban management, and agriculture. Smart home automation streamlines 
tasks and conserves energy, while remote patient monitoring and wearable 
devices revolutionize health care. The IIoT [11] optimizes production and 
supply chains. Smart city initiatives improve transportation, waste man-
agement, and public safety. Agriculture 4.0 modernizes farming through 
advanced monitoring and management techniques [1, 2].

However, the rapid proliferation of IoT devices presents significant secu-
rity challenges [12]. Data privacy concerns arise from extensive data collec-
tion, risking unauthorized access and exploitation [13]. Weak authentication 
and default credentials leave many IoT devices vulnerable to breaches [14]. 
The absence of standardized security protocols and the diversity of devices 
further compound vulnerabilities, including physical weaknesses [13].

Addressing these multifaceted security concerns demands a concerted 
effort from stakeholders across industries. Collaborative endeavors to 
establish robust security standards, implement stringent authentication 
measures, and fortify device resilience are imperative to safeguarding the 
integrity and confidentiality of IoT ecosystems. Only through proactive 
measures and collective vigilance can we harness the full potential of IoT 
technologies while mitigating associated security risks [12].

Effective security measures are imperative to mitigate these risks. IDS 
are crucial for securing IoT environments and analyzing network traffic 
and device behavior for anomalies [15]. IDSs come in three main types 
[16]: Signature-based IDS (SIDS), which matches network packets against a 
database of known attacks; anomaly-based IDS (AIDS), offering flexibility 
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against evolving threats like zero-day attacks; and hybrid IDS (HIDS), com-
bining SIDS and AIDS for improved detection rates.

Supervised classifiers are commonly employed in AIDS development, 
leveraging ML and DL algorithms trained on large datasets of normal IoT 
device activity [17]. Feature engineering enhances the quality of input data, 
enabling algorithms to differentiate between security breaches and legiti-
mate device activities. By selecting, manipulating, and refining raw data, 
feature engineering uncovers hidden patterns and insights critical for effec-
tive anomaly detection [18].

Related works on IDS using ML, DL, and feature engineering methods 
include the following.

Mohy-eddine et al. [19] tackled IoT security by integrating an anomaly-
based intrusion detection system (AIDS), with a focus on preserving data 
privacy in sensor interactions. They developed a specialized NIDS employ-
ing K-nearest neighbors (K-NN) and feature selection techniques such as 
principal component analysis (PCA), genetic algorithm (GA), and statisti-
cal tests. This enhanced model demonstrates improved accuracy, reduced 
false alarms, and faster detection times. Validated on the Bot-IoT dataset, 
the model achieved a remarkable 97% Matthew’s correlation coefficient 
(MCC) score, indicating robust performance. With an outstanding 99.99% 
accuracy (ACC), the model significantly reduces training time from 21,696 
to 102 seconds, utilizing only a subset of five features. This advancement 
marks a notable improvement in IoT security, surpassing previous models 
in both performance and efficiency. In their study [20], Panda et al. tackled 
cybersecurity vulnerabilities in IoT networks, particularly against botnet 
attacks. They proposed a combination of ML and DL techniques along 
with feature engineering for effective detection and protection. By utiliz-
ing the UNSW-NB15 dataset, they applied K-Medoid sampling and scatter 
search-based feature engineering to refine the data for optimal classifica-
tion. Evaluation of various ML methods (JChaid, A2DE, HGC) and DL 
methods (DMLP, CNN) revealed the superior performance of the scatter 
search-based DMLP classifier. This classifier achieved perfect ACC, preci-
sion, recall, and F1-score, with remarkably low computational complexity, 
training in 4.7 seconds and testing in 0.61 seconds. These results signify 
significant advancements in IoT security solutions. Musleh et al. [21] inves-
tigated ML-based IDS for IoT security, emphasizing the significance of 
feature extraction algorithms. Various algorithms, including image filters 
and transfer learning models like VGG-16 and DenseNet, were evaluated 
alongside ML methods. Using the IEEE Dataport dataset, the combined 
approach of VGG-16 with stacking showcased the highest ACC at 98.3%. 
This fusion of models significantly demonstrates the potential to enhance 
IoT security through sophisticated intrusion detection techniques. In their 
work [22], Saba et al. introduced a convolutional neural network (CNN)–
based IDS tailored for IoT security, utilizing the capabilities of DL to identify 
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anomalies in network traffic. By utilizing the NID and BoT-IoT datasets, 
the proposed model achieved high ACC scores of 99.51% and 92.85%, 
respectively. It effectively scrutinizes IoT traffic, swiftly detecting intrusions 
and abnormal behaviors. This approach harnesses the potential of IoT, 
offering a promising solution to bolster security in IoT environments, dem-
onstrating advanced anomaly detection capabilities through CNN-based 
methodologies. Mohy-eddine et al. [6] propose a NIDS tailored for smart 
agriculture environments using RBFNN. To optimize performance, crowd 
wisdom tree-based machine learning techniques are employed for feature 
selection, alongside a single-class support vector machine for outlier detec-
tion. Evaluation of NF-Bot-IoT and NF-ToN-IoT datasets shows the model 
achieving high ACC (99.25%, 90.05%) and MCC (82.97%, 96.92%), 
notably addressing the class imbalance in the NF-Bot-IoT dataset. This 
framework offers a robust solution to mitigate security vulnerabilities in 
IoT-driven agriculture, highlighting the potential for enhanced agricultural 
security through advanced intrusion detection systems (Table 11.1).

11.3  OUR CONTRIBUTION

Constructing an IDS involves several key stages: data acquisition, pre-
processing, decision-making, and response mechanisms. In our proposed 
model, particular emphasis was placed on the pre-processing phase. We 
utilized the chi-2 to identify critical features and employed an autoencoder 
to detect and eliminate outliers within the datasets.

To streamline our model and improve its efficiency, we utilized the 
chi-2 as a feature reduction technique. This approach aids in convergence, 
reduces computational costs, and enhances performance without sacri-
ficing critical data. Additionally, we employed an autoencoder to iden-
tify outliers within the NF-Bot-IoT and NF-ToN-IoT datasets, thereby 
fortifying the model. By eliminating these outliers, we anticipate a sig-
nificant enhancement in our model’s performance. We implemented these 

Table 11.1  Related works summary

Contribution Year Dataset Model ACC (%)

Mohy-eddine et al. [19] 2023 Bot-IoT KNN 99.99

Panda et al. [20] 2021 UNSW-NB15 JChaid 100

Musleh et al. [21] 2023 IEEE Dataport ML N/A

Saba et al. [22] 2022 NID CNN 99.51

BoT-IoT 92.85

Mohy-eddine et al. [6] 2024 NF-Bot-IoT RBFNN 99.25

NF-ToN-IoT 96.92
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techniques in a complementary manner. These datasets will be used to 
validate our model and investigate the impact of feature engineering order 
on its performance.

Feature engineering involves the process of selecting, modifying, and 
transforming raw data into usable features for ML and DL algorithms. 
In our approach, we utilized the chi-2 and autoencoder techniques to 
clean, filter, and select data and features. The chi-2 was employed to 
identify the most important features while retaining critical data, ensur-
ing optimal performance. Conversely, the autoencoder was utilized to 
detect and eliminate outliers, enhancing the overall quality of the data-
set. Through these methods, we refined the data to facilitate effective 
analysis and modeling.

The chi-2 is a statistical test used to detect whether two categorical vari-
ables are associated or independent. It is most commonly used for data 
organized in a contingency table, where the rows and columns reflect 
multiple groups for the variables under consideration. The chi-2 test for 
independence is frequently used to evaluate the relationship between two 
category variables. The null hypothesis (H0) states that the variables are 
independent, whereas the alternative hypothesis (H1) argues that they are 
related.

The objective of using chi-2 for the feature selection is to pick features 
heavily dependent on the target variable. When two features are indepen-
dent, the observed count is close to the predicted count, and hence the chi-2 
value is smaller. A high chi-2 score suggests that the independence hypoth-
esis is false. Simply said, the greater the chi-2 value, the more reliant the 
feature is on the target and can be chosen for model training.

An autoencoder is a type of artificial neural network used in unsuper-
vised learning. It consists of two main components: an encoder and a 
decoder, working together to reconstruct the input data. The primary goal 
of an autoencoder is to learn a compressed representation of the input data, 
capturing its essential features while minimizing redundancy.

Outliers in the autoencoder context are cases that have much higher 
reconstruction errors than the rest of the data.

Using this strategy, the autoencoder effectively detects outliers as cases 
with extremely high reconstruction errors, allowing for outlier identifica-
tion within a dataset.

In the decision-making phase, the RBFNN classifier plays a pivotal role. 
RBFNN is a type of artificial neural network (ANN). Unlike traditional 
neural networks, RBFNN uses radial basis functions (RBFs) as activa-
tion functions. These functions learn the underlying patterns represented 
by Gaussian curves. The network combines the inputs’ RBFs and neuron 
parameters to make decisions. Unlike most neural network architectures 
with multiple layers and non-linear activation functions, RBFNN typically 
consists of an input layer, a hidden layer, and an output layer.
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11.4  EXPERIMENTAL STUDY

Our experiments were carried out on an Apple M1 PRO Chip, with 32GB 
of RAM and Sonoma 14.4.1 (c).

11.4.1  Datasets and used metrics

We utilized two datasets, NF-Bot-IoT and NF-ToN-IoT, for training and 
evaluating our model. These datasets were derived from the Bot-IoT and 
ToN-IoT datasets, respectively. In the NF-Bot-IoT collection, there are a 
total of 600,100 data points, with 586,241 classifieds as attacks and 13,859 
as normal instances. Meanwhile, the NF-ToN-IoT dataset comprises 
1,379,274 cases, with 1,108,995 attack instances and 270,279 benign cases 
(Table 11.2).

 ACC :
TP TN

TP TN FP FN

+
+ + +

 

We evaluated our model using accuracy, which is defined as the ratio of cor-
rectly identified instances to all occurrences in the dataset.

 MCC :
TPxTN FPxFN

TP TN TP FP TN FP TN FN
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The MCC is a robust measure as it takes into account all four categories 
of the confusion matrix: True Negatives (TN), True Positives (TP), False 
Negatives (FN), and False Positives (FP). The MCC yields a perfect pre-
diction when it equals +1, an average prediction when it equals 0, and an 
inverse prediction when it equals -1.

11.4.2  Results and discussion

Table 11.3 presents a summary of our approach results, comparing the ACC 
and MCC across different variants of the NF-Bot-IoT and NF-ToN-IoT.

Table 11.3 and Figure 11.1 provide a comparison of the NF-Bot-IoT data-
set based on its ACC and MCC. The highest ACC of 98.49% was achieved 
when selecting a subset of features after removing outliers. Moreover, its 
ability to distinguish between positive and negative instances, as indicated 

Table 11.2 Datasets description

Dataset Normal Attack Total

NF-Bot-IoT 13,859 586,241 600,100

NF-ToN-IoT 270,279 1,108,995 1,379,274
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by the MCC, was only 79.61%, suggesting outstanding performance. 
Despite the dataset’s imbalance, our model demonstrated improved perfor-
mance with an MCC of 87.92% when selecting the most relevant features 
before removing outliers. This enhancement led to an increase in ACC from 
98.08% to 99.84%. However, solely removing outliers negatively impacted 
our model’s distinguishability with 44.43% MCC.

Table 11.3 and Figure 11.2 provide a comparison of the NF-Bot-IoT data-
set based on its ACC and MCC. The highest ACC of 98.49% was achieved 
when selecting a subset of features after removing outliers. Moreover, its 

Table 11.3  Our models’ results

Dataset ACC (%) MCC (%)

NF-Bot-IoT Full 98.08 60.44

Selected 98.43 77.71

Outliers 98.95 44.43

Outliers & Selection 98.49 79.61

Selection & Outliers 99.84 87.92

NF-ToN-IoT Full 96.17 87.46

Selected 97.03 89.64

Outliers 97.91 91.14

Outliers & Selection 96.29 87.50

Selection & Outliers 98.64 92.53

Figure 11.1  ACC and MCC results on NF-Bot-IoT dataset
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ability to distinguish between positive and negative instances, as indicated 
by the MCC, was only 79.61%, suggesting outstanding performance. 
Despite the dataset’s imbalance, our model demonstrated improved perfor-
mance with an MCC of 87.92% when selecting the most relevant features 
before removing outliers. This enhancement led to an increase in ACC from 
98.08% to 99.84%. However, solely removing outliers negatively impacted 
our model’s distinguishability with 44.43% MCC.

Similarly, our model demonstrated improved performance after remov-
ing outliers from the NF-ToN-IoT dataset, increasing ACC from 97.91% 
and MCC from 87.46% to 92.53%. Furthermore, feature selection accel-
erated our model’s predictions while maintaining superior performance. 
Specifically, on the Outliers & Selection variant, our model achieved an 
ACC of 96.29% and MCC of 87.50%, while on the Selection & Outliers 
variant, it achieved an ACC of 98.64% and MCC of 92.53%.

Table 11.4 presents our model’s performance and compares it with other 
previous works. While our model demonstrated excellent performance in 
detection and distinguishability, it exhibited limitations when applying 
feature selection. To address this, introducing an additional layer of fea-
ture selection that assesses feature correlation could potentially enhance 
our model’s performance. Furthermore, applying alternative outlier detec-
tion methods on the dataset might yield improved results, as it employs an 
approach different from the autoencoder [26–40].

Figure 11.2  ACC and MCC results on NF-ToN-IoT dataset
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11.5  CONCLUSION

In summary, the rapid expansion of the IoT has revolutionized connectivity 
but has also exposed significant security risks. Our research underscores 
the urgency of addressing these vulnerabilities to safeguard the integrity 
and reliability of IoT ecosystems. The development of our proposed IDS 
tailored for IoT environments represents a crucial step toward enhancing 
security measures.

Our IDS model combines various methods, including the RBFNN, 
the chi-2 for feature selection, and an autoencoder for outlier detection. 
Extensive evaluations using the NF-ToN-IoT and NF-Bot-IoT datasets vali-
date the robustness of our approach. Our model achieved a noteworthy 
ACC and MCC, underscoring its effectiveness in identifying deviations 
within IoT networks. The high MCC score indicates the model’s ability to 
differentiate between normal and abnormal behavior, affirming its reliabil-
ity in intrusion detection.

While our model demonstrates promising results, further research and 
development are imperative. Future enhancements should focus on scal-
ability to accommodate diverse data sources and larger IoT networks. 
Additionally, improving outlier detection techniques to adapt to evolving 
threats and anomalous patterns will be essential for maintaining the effi-
cacy of IDS solutions.
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An intrusion detection system 
using paragraph vector-
distributed memory approach

Chadia EL Asry, Ibtissam Benchaji, Samira 
Douzi, and Bouabid EL Ouahidi

12.1  INTRODUCTION

Intrusion detection systems (IDSs) are one of the most important compo-
nents of a security infrastructure that can prevent cyberattacks from a vari-
ety of sources. In the security literature, there are many different types of 
IDS schemes. In this context, there are two types of IDS schemes [1, 2]: 
host IDS and network IDS. The former aims to secure a computer system 
by monitoring all events, while the latter aims to protect a network. IDS 
techniques are also classed as signature detection and anomaly detection 
approaches based on their detection capability.

Signature-based IDSs often use a predefined database of security attack 
signatures to try to match events and traffic to certain attack patterns 
[3]. However, signature-based IDS techniques are unable to identify new 
attacks with unknown patterns and signatures [4]. Abnormality-based IDS 
techniques, on the other hand, seek to learn normal activities and identify 
everything else as anomaly or intrusion [4]. Nonetheless, they have a prob-
lem with false positives, which limits their use.

In the literature, many IDS approaches are reported that use various deep 
learning and shallow learning models to automatically distinguish normal 
and abnormal events in systems and networks [5]. Deep learning, in par-
ticular, is based on artificial neural networks (ANNs), which use numerous 
hidden layers for data transformation and have a higher learning power. 
Deep neural networks (DNNs), convolutional neural networks (CNNs), 
and recurrent neural networks (RNNs) are examples of deep learning net-
works that have been widely used in a variety of applications, including 
security and intrusion detection [6].

Shallow learning, a well-established technique, has been extensively uti-
lized in cybersecurity for attack detection [5]. Multiple research works have 
employed algorithms such as random forest [7], support vector machine 
(SVM) [8], and others to classify intrusions from traffic data.

The following contribution is included in the chapter:
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• Propose an IDS based on the PV-DM approach and ML models.
• Using NSLKDD [5] dataset to evaluate our model.
• Use of the PV-DM technique with five classifiers to choose the best 

one.

The following sections make up this chapter: Related works are presented 
in Section 12.2. Section 12.3 discusses the many concepts we used in our 
search. Section 12.4 describes the suggested approach in depth, including 
implementation and experimental findings, and Section 12.5 concludes the 
chapter.

12.2  RELATED WORKS

Several studies have addressed this topic [9–21], where numerous articles 
discuss the different techniques to create successful IDS capable of solving 
all kinds of attacks.

The authors in [9] described an LSTM model for network intrusion 
detection, utilizing both normal and malicious user behaviors to repre-
sent network traffic as time series data. They trained the model using the 
DARPA and KDD Cup’99 datasets and explored various network topolo-
gies to assess its effectiveness. Additionally, the research examined differ-
ent feature sets for detecting attacks and establishing tailored training for 
specific attack types on networks.

The authors in reference [10] introduced a model that combines feature 
selection techniques with LSTM for classification, aiming to improve the 
detection of low-frequency attacks R2L and U2R in the NSL-KDD dataset.

In [11], the authors introduced a method for predicting user behavior on 
a Tor network using a deep recurrent neural network (DRNN). They set up 
a Tor server and client alongside a Wireshark network analyzer to gather 
data on Tor, a network user, which was then utilized to train the DRNN 
model.

In [12], researchers introduced a DDoS attack detection approach using a 
support vector machine (SVM) in software-defined networks (SDN). Their 
results indicate an average accuracy of approximately 95.24% with a lim-
ited flow volume. However, drawbacks of the SVM model include the need 
for extensive training and expertise in machine learning; its complex final 
model, which is difficult to interpret; and challenges in fine-tuning SVM 
parameters.

In their study [13], the authors explored different feature reduction 
approaches and deep learning techniques. They applied LSTM, BiLSTM, 
and stacked LSTM to three feature reduction methods: Shap values, 
Boruta, and Anova F-test, aiming to select the optimal model. They found 
that the model combining Shap values with stacked LSTM performed best, 
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achieving accuracy, precision, recall, and F1-score of 99.25%, 95.28%, 
87.60%, and 89.69%, respectively, particularly notable given the data-
set’s imbalance. Usama in [14] proposed a generative adversarial network 
(GAN) designed for intrusion detection, boasting strong resistance against 
adversarial attacks. However, despite its efficacy, this method often poses 
challenges in parameterization and is susceptible to training instability in 
many instances.

Yan et al. [15] conducted an analysis of four deep learning models using 
two intrusion datasets, namely NSL-KDD and UNSW-NB15. The models 
evaluated were restricted Boltzmann machine (RBM), multilayer percep-
tron (MLP), sparse Autoencoder (SAE), and MLP with feature embedding. 
However, it is noteworthy that their experiments did not include evalua-
tions on newer intrusion datasets.

In 2022, Douiba et al. [16] leveraged NSL-KDD, IoT-23, BoT-IoT, and 
Edge-IIoT datasets for evaluating both the classifiers, ensemble models such 
as gradient boosting (GB) and decision tree (DT), together with CatBoost 
open-source to enhance IoT safety. They demonstrated excellent perfor-
mances, with measurements of precision, recall, and a success rate (ACC) 
close to 99.9%, while achieving record detection and computation times. 
In a similar effort, Hazman et al. [17] extracted data from the IoT-23, 
BoT-IoT, and Edge-IIoT datasets to further develop an optimized anom-
aly detection framework, named IDS-SIoEL, through ensemble learning 
with AdaBoost. In their study, the technical subtleties of alternative feature 
selected methodologies, such as mutual information, Boruta, and correla-
tion, were revealed. In fact, the model achieved exceptional results, with 
high accuracy, precision, recall, and a success rate (CCA) ratings of close to 
99.9%. Moreover, both detection and learning delays were outstandingly 
rapid, at 0.02156 s and 33.68 s, respectively.

In another study, Mohy-eddine et al. [18] capitalize on the wustl-
iiot-2021 and BoT-IoT datasets for optimizing a set-based intrusion detec-
tion solution for IoT edge computing. Their methodology involves the use 
of Pearson correlation for characteristic selection and isolation logging to 
rule out outliers.

12.3  BACKGROUND

12.3.1  Paragraph vector-distributed 
memory approach (PV-DM)

The paragraph vector-distributed memory approach (PV-DM) method is an 
unsupervised learning approach inspired by techniques used to learn con-
tinuous vector representations for words, particularly through neural net-
works like word2vec [22]. The core concept of PV-DM involves representing 
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a paragraph P as a vector that aids in predicting the subsequent word in a 
phrase [23].

In the PV-DM model, each paragraph is associated with a singular vec-
tor, depicted as a column in matrix D, while each word corresponds to a 
unique vector, represented as a column in matrix W. Consequently, a clas-
sifier (such as Softmax) predicting the next word in a context will average 
and concatenate the paragraph and word vectors (Figure 12.1).

12.3.2  NSL-KDD dataset

The NSL-KDD dataset [24] is a newer version of the KDD-cup 99 data-
set [25]. This dataset is more reliable to use because it does not contain 
redundant and duplicate records. Initially, the NSLKDD dataset contained 
4,898,430 records with 972,780 normal records and 3,925,650 attack 
records. It has 38 different attacks, such as smurf, neptune, satan, ipsweep, 
and portsweep.

The NSL-KDD comprises 42 features, which are arranged into four dif-
ferent categories:

• 4 Categorical (Features: 2, 3, 4, 42).
• 6 Binary (Features: 7, 12, 14, 20, 21, 22).
• 23 Discrete (Features: 8, 9, 15, 23 to 41, 43).
• – 10 Continuous (Features: 1, 5, 6, 10, 11, 13, 16, 17, 18, 19).

Figure 12.1  A framework for learning paragraph vector [17]
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12.4  OUR APPROACH

The framework proposed to detect IDS is shown in Figure 12.2. First, 
developing an IDS detection model necessitates a good comprehension of 
subject matter knowledge and acquisition of the appropriate datasets. In 
this respect, the extraction of characteristics from existing data lies at the 
heart of the development of successful detection models.

Our proposed approach (Figure 12.2) consists of applying the PV-DM 
approach, which generates embedding vectors that will be the inputs of 
five classifiers of ML models, which are SVM, Random-Forest, Logistic 
Regression, Gaussian-NB, and XGboost, to select the best classifier in 
terms of accuracy, precision, recall, F1-score, and AUC.

In our proposed framework, we use the NSL-KDD dataset, which corre-
sponds to the highly sophisticated version created for the KDDcup99 data-
set [26]. A wide variety of different techniques and analysis approaches 
have been implemented by different researchers on the NSL-KDD dataset, 
with the ultimate aim of creating a comprehensive and efficient intrusion 

Figure 12.2  Our proposed approach
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detection scheme. A more detailed investigation of the NSL-KDD data-
set employing a variety of machine learning techniques can be accessed 
largely through the WEKA tool in [27]. The clustering algorithm K-means 
exploits the NSL-KDD dataset [28] in order to train and test different 
types of existing and new attacks. A benchmarking comparison of the 
NSL-KDD dataset against its predecessor, the KDD99 cup dataset, is per-
formed in [29] by using the SOM (self-organization map) artificial neu-
ral network. A comprehensive evaluation of diverse datasets, including 
KDD99, GureKDD, and NSLKDD, is conducted via various data mining-
based machine learning algorithms, notably the support vector machine 
(SVM), decision tree, K-nearest neighbor, K-means, and fuzzy C-means 
clustering algorithms.

12.4.1  Experimental results and discussion

Table 12.1 presents the performance of the PV-DM model with the five clas-
sifiers in order to select the best model based on evaluation metrics.

Analyzing the performance of the PV-DM model without feature reduc-
tion across five different classifiers, the XGBOOST classifier stands out 
with the best overall performance. With an ACCURACY% of 93.79%, 
XGBOOST demonstrates the highest overall precision among the classi-
fiers. Similarly, its PRECISION% score of 93.95% indicates its ability to 
correctly identify true positives. While not ranking first in RECALL%, 
XGBOOST maintains a strong 82.80%, suggesting it can detect a signifi-
cant proportion of true positives. Its F1-SCORE% of 86.89% signifies a 
good balance between precision and recall. Lastly, XGBOOST also domi-
nates in AUC% with a score of 91, indicating excellent ability to correctly 
classify positive and negative examples.

The RANDOM FOREST classifier emerges as the second-best in this 
analysis. With an ACCURACY% of 90.73%, RANDOM FOREST shows 
overall solid performance. Its PRECISION% score of 94.25% is also 
excellent, showing its ability to identify the vast majority of true positives. 

Table 12.1  Classification performance for PV-DM with five classifiers

NSL-KDD

Accuracy% Precision% Recall% F1-score% AUC%

P
V

-D
M

 w
it

h

SVM 79.56 70.57 63.67 65.09 79

RANDOM-FOREST 90.73 94.25 69.16 74.13 83

LOGISTIC 
REGRESSION

79.60 71.68 68.82 70.19 81

GAUSSIAN-NB 37.19 40.06 68.20 45.10 72

XGBOOST 93.79 93.95 82.80 86.89 91
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However, its RECALL% score at 69.16% is slightly lower than XGBOOST, 
suggesting it misses some true positives. The F1-SCORE% of 74.13% still 
indicates a good balance between precision and recall. RANDOM FOREST 
also obtains a good AUC% score of 83, showing its ability to correctly clas-
sify positive and negative examples.

Lastly, the GAUSSIAN-NB classifier ranks as the least performing 
among the five. With a low ACCURACY% of 37.19%, GAUSSIAN-NB 
fails to reach the performance of the other classifiers. Its PRECISION%, 
RECALL%, F1-SCORE%, and AUC% scores are also markedly lower, 
highlighting its struggle to effectively classify intrusions in the traffic data.

In conclusion, the XGBOOST classifier emerges as the best choice for this 
PV-DM model due to its high overall performance, while GAUSSIAN-NB 
ranks as the least performing in this comparison.

12.4.2  Assessing our method in contrast 
to prior research investigations

This comparison (Table 12.2) serves as a reference point, given that IDSs 
vary in their operational settings, data pre-processing techniques, and 
interpretation methods. Nevertheless, our model yields significantly supe-
rior results compared to all the assessed models, suggesting its suitability 
for this specific problem and showcasing the versatility and robustness of 
our architecture.

12.5  CONCLUSION

This chapter introduces an efficient network attack detection method based 
on deep learning coupled with a machine learning classifier. Specifically, 
paragraph vector-distributed memory (PV-DM) and XGBoost were 
employed as the classifier for intrusion detection, focusing on multiclass 
classification tasks.

The experimental findings demonstrate that the proposed attack detec-
tion approach achieves superior performance in recognizing known attacks, 
especially when applied to the NSL-KDD.

Table 12.2  Comparing various models with our approach

Model Accuracy Precision Recall F1-Score

LSTM [10] 99,73 88,3 84,92 85,33

KNN [26] 0,622 0,578 0,622 0,576

DNN [26] 0,785 0,810 0,785 0,765

Proposed model 93.79 93.95 82.80 86.89
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Chapter 13

Advanced security of blockchain 
authentication system using 
zero-knowledge protocol

Yacouba Kouraogo and Ghizlane Orhanou

13.1  INTRODUCTION

Blockchain technology (or blockchain for short) has emerged as a foun-
dational technology that provides security through cryptography and 
consensus mechanisms and addresses the issues of single point of failure 
and single point of trust. The transparency and immutability of block-
chain allows publicly provable and indisputable records to be stored 
[1]. Additionally, the introduction of smart contracts into blockchain 
has broadened its horizon of utility beyond cryptocurrency [2]. Indeed, 
blockchain is applied in many application areas: from cryptocurrencies 
to the Internet of Things (IoT), health care and financial systems, sup-
ply chain management, etc. Although blockchain is considered a promis-
ing technology, it still has security vulnerabilities that adversaries play 
through.

The Blockchain Threat Report published by McAfee [3] mentions that 
blockchain transactions carry security risks. Their list includes well-
adopted blockchain implementations such as Bitcoin and Ethereum. 
Potential attacks, such as 51% attacks 51% [4], Sybil attacks [5], ran-
somware attacks [6], man-in-the-middle attacks [6], and identity theft 
[5]. Then, smart contracts – autonomous programs running on the 
blockchain – can have vulnerabilities that are exploited by malicious 
actors.

To solve this security problem, we propose a new approach of a protocol-
based authentication system without information disclosure. Thus, in this 
chapter, we use the Fiat-Shamir protocol for the authentication system and 
a hash function made robust with the use of salt to ensure the integrity 
of messages transmitted through the blockchain architecture. We conclude 
with a security analysis of our proposed system.
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13.2.  SECURITY PROBLEMS IN 

BLOCKCHAIN TECHNOLOGY

13.2.1  Problematic

Despite the different security mechanisms mentioned above, several 
security issues in blockchain technology today make attacks possible: the 
man in the middle attack, the Sybil attack, and the ransomware attack 
as well as, furthermore, the problem of the non-existence of the reli-
able guarantee of human identity according to Nicholas J. Hopper and 
Manuel Blum [7].

Our objective in this chapter is to provide a secure blockchain by address-
ing the problem of human identity (authentication) and protecting informa-
tion on the distributed network.

13.2.2  Related work

To effectively analyze and conduct a study on a crucial topic like blockchain 
security, it is very important to see what other researchers have done in this 
area. We therefore carried out a literature review of related works already 
published on this subject.

The most recent studies of blockchain security issues are discussed 
below. Jiang et al. [8] analyzed a systematic study of security threats 
to blockchain and elaborated the corresponding real-world attacks, 
including selfish mining attacks, DAO attacks, BGP hijacking attacks, 
and eclipse attacks. Banerjee et al. [9] reviewed articles focused on IoT 
security solutions and highlighted attacks such as cyberattacks, botnet 
malware, DoS, and DDoS. Research by Taylor et al. [10] systematically 
reviewed the recent and most vulnerable attacks in the field of cybersecu-
rity and the role of blockchain in its mitigation. Different security issues 
are evaluated in IoT [11, 12] and these issues are classified relating to 
different layers of the IoT stack. Recently, Ferraget al. [13] classified the 
thread models in blockchain protocols relating to IoT networks. In [14], 
the authors deliberated on the long-range attack in which an attacker 
returns to the genesis block and forks the blockchain, causing a serious 
threat to the proof of stack.

In addition, Abhishek Guru et al. [15] highlight the problem of unguar-
anteed security due to flaws in all consensus algorithms, which are some-
times the cause of attacks in the blockchain. Nicholas Hopper and Manuel 
Blum [7] reason about the problem of the non-existence of a reliable guar-
antee of human identity in the blockchain.
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13.3  ENHANCEMENT OF AUTHENTICATION 

SYSTEM ON BLOCKCHAIN USING PROTOCOL 

ZERO-KNOWLEDGE FIAT-SHAMIR

13.3.1  Existing blockchain system

Blockchain technology is a revolutionary innovation that has the potential 
to transform many industries, such as finance, logistics, IoT, health care, 
supply chains, smart grids, and others. Figure 13.1 presents the operat-
ing principle of transactions in blockchain technology, which is performed 
without authenticating the user making the transaction.

The existing blockchain system appears secure, but it has many security 
vulnerabilities that allow attackers to carry out attacks against the finan-
cial, administrative, logistics, and industrial sectors that use blockchain. 
The most common and simplest possible attacks are:

• Attack of the man in the middle [6]
• Ransomware attack [6]
• Identity theft [5]

An authentication mechanism added to the existing system would give 
an additional security layer that would help in confronting such types of 
attacks. Our objective in this chapter is to offer an enhancement of the 
existing blockchain system by adding an authentication mechanism based 
on the zero-knowledge Fiat-Shamir protocol.

13.3.2  Proposed authentication system

To overcome these security issues, it is timely for us to propose a new 
approach of authentication system in blockchain technology based on 

Figure 13.1  Existing blockchain system [16]
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the zero-knowledge protocol, which is an improvement over the exist-
ing method. In this proposed system, we ensure guaranteed security of 
authentication via the Fiat-Shamir [17] protocol (Figure 13.2) because the 
secret information does not pass through the network. In the following, we 
describe how our authentication approach works:

• Protocol zero-knowledge: Fiat-shamir

Alice, the user, wants to authenticate with Bob. So, we have the following 
parameters:

• Alice chooses two large prime numbers p and q and calculates n = pq
• Alice then randomly chooses an integer x between 1 and n-1 and cal-

culates y = x2 mod n.
• The pair (n, y) is its public key, and x its secret key
• Proposed approach system

Figure 13.3 illustrates our approach to the blockchain authentication sys-
tem based on the Fiat-Shamir protocol.  

We describe below the proposed approach:

Step 1: Alice wants to make a transaction via the blockchain to Bob,
Step 2: She first authenticates with Bob

• It chooses two large prime numbers p and q and calculates n= pq
• Alice then randomly chooses an integer x between 1 and n-1 and 

calculates
– y = x2 mod n.

Figure 13.2  Fiat-Shamir zero-knowledge protocol
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• The pair (n, y) is its public key, and x its secret key
• To authenticate, it chooses a number r between 1 and n-1 and 

calculates t = r2 mod n.
• She sends t to Bob, who, in turn, chooses e from 0 and 1, then 

sends it to Alice.
• Alice calculates s = r/xe mod n and sends s to Bob
• Bob carries out the verification by calculating s2 ye mod n ; if result 

is equal to t, then Alice is authenticated, otherwise the authentica-
tion is canceled

Step 3: She sends the message to Bob
• It calculates salt = t.s.y mod n || e, in order to make the hash func-

tion H() more robust. And ensure the integrity
• It performs hashing of the message m such that H (m || salt)
• She transmits (m, H) to Bob
• Bob calculates H’ and salt such that H’(m || salt)
• If H = H’ then the message has not been altered on the network, 

otherwise it has been modified.

13.3.3  Security analysis

Our authentication system based on the zero-knowledge Fiat-Shamir proto-
col overcomes the security problem regarding identity and authentication in 
blockchain technology. Indeed:

• Our system is consistent, which means that knowledge of secret x 
allows Alice to respond to the challenge proposed by Bob, whatever 
its value.

Figure 13.3  Enhancement authentication system on blockchain using protocol zero-
knowledge Fiat-Shamir
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• Our system is significant, that is to say that, to succeed in its identi-
fication with acceptable probability (here greater than ½), Alice must 
know the secret x. Indeed, Alice cannot predict the value of e at the 
moment she transmits t to Bob. At the risk of failing in her authentica-
tion, Alice must be able to provide Bob with the two possible answers 
r and r/x from S (But she will provide only one so as not to reveal her 
secret) and therefore must know x.

• Our system ensures the anonymity of information through the non-
disclosure of information protocol.

• Our system ensures the integrity of the message on the network via 
the hashing function, which is made robust with Salt.

13.4  CONCLUSION

Blockchain technology, since its appearance, has led to positive upheav-
als in our lives in which digital sciences have grown with their capacity to 
generate large data, whether public or private. However, the security of this 
data and the authentication problem are becoming a worrying issue for 
more stakeholders in the sector. Therefore, it is this concern that leads us to 
propose adequate solutions to these problems.

In this context, we proposed an authentication system in the blockchain 
based on the zero-knowledge protocol Fiat-Shamir. After a security analy-
sis of our system, we can conclude that our system is consistent and mean-
ingful, ensures integrity, and overcomes the lack of authentication that was 
present in the existing blockchain system.
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Chapter 14

Intelligent phishing URL 
classification using CNN

Habiba Bouijij and Amine Berqia

14.1  INTRODUCTION

A phishing URL attack is a malicious technique utilized by cybercriminals 
to trick unsuspecting individuals into revealing their confidential informa-
tion by disguising themselves as reputable entities. These nefarious actors 
often distribute fraudulent emails or messages, carefully crafted to appear 
as if they originate from trustworthy sources, coercing the recipient to click 
on a link provided. Upon clicking, the unsuspecting victim is redirected to 
a counterfeit website artfully designed to closely resemble an authentic one. 
Within this deceptive digital realm, victims are lured into unknowingly 
disclosing their personal and financial particulars, ultimately resulting in 
devastating consequences, such as identity theft, substantial financial dam-
ages, and illicit access to their accounts [1]. The detrimental repercussions 
of falling victim to such a pernicious scheme cannot be overstated. It is vital 
for individuals to remain vigilant and exercise caution when encountering 
unsolicited messages or questionable links, thereby thwarting cybercrime 
and safeguarding their invaluable personal information.

According to the Anti-Phishing Working Group (APWG), there was a 
significant rise in phishing incidents in the second quarter of 2023. The 
APWG recorded a staggering total of 1,286,208 such events, establish-
ing a new pinnacle in activity irrespective of an overall downward trend 
in phishing occurrences. Interestingly, the financial sector bore the brunt 
of these attacks, accounting for a remarkable 23.5% of these malevolent 
assaults, with online payment services experiencing a concerning attack 
rate of 5.8%. These striking statistics underscore the persistently emerging 
and evolving threat that phishing operations represent [2]. In an increas-
ingly interconnected digital landscape, it is imperative for individuals and 
organizations alike to remain vigilant and employ effective cybersecurity 
measures to safeguard against the ever-present danger of phishing attacks.

Moreover, as the threat posed by cybercriminals continues to rise, it has 
become increasingly evident that they are embracing the use of machine 
learning (ML) technologies to bolster their malicious activities, particularly 
phishing tactics. One noteworthy instance of this is the emergence of the 
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DeepPhish project, a brainchild of Cyxtra Technology [3], which harnesses 
the power of ML to create highly intricate phishing URLs that are excep-
tionally adept at evading conventional detection mechanisms. With cyber 
threats evolving at such a rapid pace, it is becoming more crucial than ever 
to adopt advanced cybersecurity measures, such as the implementation 
of cutting-edge deep learning algorithms, in order to mount a formidable 
defense against these ever-advancing phishing schemes.

14.2  RELATED WORK

The cybersecurity landscape is seeing a surge of using machine learning 
and deep learning to detect URL phishing. Since cyber threats are evolv-
ing, conventional methods of detection have become less and less effective 
against advanced and complex ones. Machine learning detects patterns in 
data through analysis of big datasets and improves the accuracy and speed 
of detection, while deep learning is a subset of machine learning focusing 
on neural networks that can detect small signs of phishing by understand-
ing complex relationships between data [4–10].

Authors [11] presents a comprehensive examination of deep learning-
based architectures, encompassing simple RNN, basic LSTM, and CNN-
LSTM, highlighting their effectiveness in the classification of URLs as either 
malicious or benign. The performance of these architectures is meticulously 
evaluated, with a focus on accuracy, precision, and recall as key perfor-
mance metrics. Among the three architectures, the CNN-LSTM approach 
stands out as the top performer, achieving an impressive accuracy rate of 
93.59%.

Authors [12] introduce a groundbreaking method that utilizes convo-
lutional neural networks (CNNs) with only URLs as input. This method 
starts by extracting word-level tokens from the URLs, then processes these 
tokens through a word embedding layer, and finally through finely adjusted 
CNN layers. Their research demonstrates the method’s effectiveness, par-
ticularly noting its superior performance over many existing techniques on 
a large, new dataset.

The authors [13] present PhishHaven, an innovative real-time 
AI-generated phishing URL detection system. A review of relevant litera-
ture indicates that PhishHaven is the first of its kind, specifically designed 
to identify AI-generated phishing URLs. Tailored to detect URLs generated 
by DeepPhish [4], their system incorporates lexical feature-based extraction 
and analysis techniques. To enhance PhishHaven’s proactive detection and 
classification capabilities, the authors introduce URL HTML encoding as 
an additional lexical feature. Moreover, they introduce the concept of URL 
Hit, a method aimed at effectively detecting tiny URLs in real time.
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14.3  METHODOLOGY AND EXPERIENCE

In this section, we outline the various steps taken to implement and evaluate 
our CNN-based model for classifying phishing URLs. We conducted two 
experiments. Initially, we trained and tested the model with a dataset con-
taining regular phishing URLs. Subsequently, we executed the model with 
a dataset containing both regular phishing URLs and URLs generated by 
DeepPhish. For the first run, we employed the cross-validation technique 
and computed the average of each metric. In the second run, we utilized the 
train_test_split method.

14.3.1  Data collection and pre-processing

In this study, we utilized two categories of datasets. The first dataset com-
prised URL data collected from the Mendeley Data website [14]. Due to 
limitations in computational resources, our dataset was constrained to a 
total of 40,000 URLs, evenly distributed between 20,000 phishing URLs 
and 20,000 legitimate ones (Figures 14.1 and 14.2).

For the second dataset, we incorporated 1,000 normal URLs from 
Openphish [15] collected in January 2024, 1,000 phishing URLs generated 
by DeepPhish [3], and 2,000 legitimate URLs from PhishTank [16].

Therefore, we adopted the tokenizer technique [17], specifically the 
Tokenizer class from the deep learning framework TensorFlow, to trans-
form URLs into integer sequences, which serves as a pivotal initial step 
in various natural language processing endeavors that involve URL data. 
Initially, the tokenizer is configured by being fitted to the provided URL 
list, thereby constructing a vocabulary that uniquely associates each token, 
typically representing words or subcomponents of URLs, with a distinct 
integer. This vocabulary plays an indispensable role in the conversion of 

Figure 14.1 Proposed approach
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URLs into integer sequences, facilitated by the utilization of the texts_to_
sequences function within the tokenizer.

14.3.2  Training and testing data 
using cross-validation

Cross-validation, which is a fundamental step in deep learning and data 
analysis, involves splitting data into training and test sets. Cross-validation 
is a technique that ensures the ability of a predictive model to be generalized 
and reliable by testing a model’s performance on various data subsets [18, 
19]. We employed the RepeatedStratifiedKFold method. Cross-validation 
partitions datasets into a series of folds or subsets. The commonly used 

Figure 14.2  Algorithm of CNN model
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option is k-fold cross-validation, in which the data is divided into roughly k 
equal parts. In every iteration, one of these folds acts as the test set, while 
the other k-1 folds may be utilized as the training set. This operation is 
repeated k times, with each fold being used as the test set once, allowing for 
a comprehensive analysis.

14.3.3  Convolutional neural network model

A convolutional neural network (CNN) is a type of deep learning algo-
rithm primarily used for processing structured grid data such as images. It 
employs layers of convolutions, applying filters to detect patterns and fea-
tures, making it highly effective for image recognition, classification, and 
analysis tasks [17, 20]. In this study, we employed the algorithms outlined 
in Figure 14.2 to construct our CNN model and derive results.  

14.4  RESULTS AND DISCUSSION

Our project implementation has focused on the task of URL classification. 
In this endeavor, we used python programming language, which offers 
an extensive ecosystem of tools and libraries that proved highly beneficial 
throughout our work.

To tackle the challenge of processing and preparing the textual data derived 
from these URLs, we adopted a tokenization approach. Tokenization is a 
crucial step in natural language processing (NLP) and enables us to break 
down the text into smaller, meaningful units, which is particularly relevant 
when working with URLs that can contain various elements and structures.

We designed and implemented a convolutional neural network (CNN) 
model. CNNs are renowned for their effectiveness in various domains, 
including image recognition and, in our case, text classification. The model 
has been tailored to extract essential features from the tokenized URL data 
and make predictions based on these features.

Table 14.1 provides a representation of the achieved results for the initial 
dataset.

The outcomes of our model consistently exhibits high precision scores 
ranging from 98.64% to 99.90%, affirming its ability to accurately identify 
phishing URLs. The accuracy score, spanning from 98.70% to 99.94%, 
underscores the overall correctness of the model’s classifications. With 
an F1-score ranging between 98.29% and 99.92%, our model achieves a 
harmonious balance between precision and recall, ensuring both quality 
and comprehensiveness in its performance. The recall score, ranging from 
97.93% to 99.97%, highlights the model’s effectiveness in correctly identi-
fying the majority of phishing URLs.

For the second dataset, we cite the results obtained.  
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Figure 14.3 illustrates the outcomes obtained using the second dataset, 
which includes both regular phishing URLs and URLs generated by artifi-
cial intelligence. These results suggest a highly commendable performance 
of the model, with precision, accuracy, F1-score, and recall all exceeding 
99%. This indicates the model’s robust ability to classify data with a very 
narrow margin of error.

To sum up this section, we conducted a comprehensive comparison of our 
research with existing studies in the literature. The results, as depicted in 
Table 14.2, clearly indicate that our research outperforms the majority of 

Table 14.1  Visualization of the results obtained from the CNN model

Fold Precision (%) Accuracy (%) F1-score (%) Recall (%)

Fold0 98.64 98.70 98.29 97.93

Fold1 99.67 99.80 99.74 99.80

Fold2 99.90 99.89 99.85 99.80

Fold3 99.80 99.89 99.85 99.90

Fold4 99.80 99.90 99.87 99.93

Fold5 99.84 99.91 99.89 99.93

Fold6 99.74 99.88 99.84 99.93

Fold7 99.74 99.89 99.85 99.97

Fold8 99.87 99.90 99.87 99.87

Fold9 99.90 99.94 99.92 99.93

Average 99.69 99.77 99.70 99.70

Figure 14.3  Visual representation depicting the performance of CNN with the second 
dataset
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previous studies. Notably, we achieved the highest level of accuracy through 
an exhaustive evaluation of six distinct algorithms across eight unique sce-
narios. This comprehensive and unprecedented study sets a new benchmark 
in the field, highlighting the depth and breadth of our research efforts.

14.5  CONCLUSION AND FUTURE WORK

URL classification plays a crucial role in identifying and distinguishing 
phishing websites, which trick users into revealing sensitive information 
and pose significant threats to information systems. Various detection and 
mitigation strategies have been developed over time. Recently, the focus 
has grown on employing deep learning and machine learning techniques 
to address the challenges presented by phishing websites. These advanced 
models are trained on extensive datasets containing examples of both legiti-
mate and malicious websites, enabling them to accurately categorize new 
websites based on the patterns and characteristics learned during training.

This research utilized two distinct datasets to assess the effectiveness of 
our approach. The first dataset, comprising 40,000 instances, was evenly 
divided between 20,000 legitimate URLs and 20,000 instances of typical 
phishing URLs. The second dataset included 2,000 legitimate URLs, 1,000 
regular phishing URLs, and 1,000 phishing URLs generated by DeepPhish. 
A tokenization approach, a crucial step for transforming and processing the 
textual data within URLs, was employed.

The results of our evaluation were highly impressive, underscoring the 
robustness of our approach. For the first dataset, we achieved outstanding 
average precision, accuracy, F1-score, and recall metrics surpassing 99.5%. 
Similarly, for the second dataset, these metrics reached a commendable 
99%. This highlights the efficacy of our model in accurately classifying 
URLs and underscores its potential significance in strengthening cyberse-
curity measures against phishing threats.

Table 14.2 Comparative analysis

Reference Approach Accuracy score

[11] CNN-LSTM 93.59%

[12] CNN + word-level 97.59%

[13] PhishHaven 98% for simple URLs
98% for intelligent URLs

This work CNN + Tokenizer 99.77% for simple URLs
99% for intelligent URLs
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Chapter 15

The impact of AI and 
automation on digital 
forensic investigations

Mohammad Ali A. Hammoudeh, Amal 
Almotairy, Amnah Alharbi, and Eman Alotaibi

15.1 INTRODUCTION

Digital forensic investigations (DFI) involves collecting resources for 
investigating cybercrime, fraud, and other digital offences as criminal 
activities in forensics science. The trajectory of evolution of this term 
began between the early 1970s to the 1980s, focusing on manual docu-
mentation as well as suspect documentation [1]. It focuses on locating, 
acquiring, treating numerically, and interpreting electronic records [2]. 
These records are useful to law enforcement agencies, legal authorities 
and prosecutors, security teams, corporate management and executives, 
employees and users, insurance companies, and stakeholders in regula-
tory authorities. Each of the participants with respect to these records 
must look for what they particularly need in order to obtain a more 
productive grasp on the process that took place after applying differ-
ent methods, which accelerates understanding of information collected. 
Artificial intelligence (AI) has added a substantial helping hand to vary-
ing views that contribute positively to the process of handling very com-
plicated records in these investigations. Issues treated include data quality 
and quantity, privacy concerns, algorithmic bias, fairness explanations, 
security resource constraints, regulatory challenges, and human-AI col-
laboration. Digital forensic investigations with AI is useful in dealing 
with data processing and analysis, pattern recognition, anomaly detec-
tion, malware analysis, natural language, NLP image and video analysis, 
timeline analysis, data recovery, predictive analysis, automation, optimi-
zation, blockchain analysis, and collaborative intelligence.

This study aims at expanding knowledge of topics pertaining to artifi-
cial intelligence and automation on digital forensic investigations, including 
computer forensics, network forensics, and mobile device forensics, among 
others. Identifying and pursuing certain areas contributes to understanding 
existing resources, including frameworks approaches and models, strategies 
processes, and techniques tools. To present the research questions, three 
primary research questions (RQ) along with DFI follow.
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RQ1: What are the current boundaries of exploration in digital forensic 
investigations? RQ2: What trends and patterns can be developed in 
digital forensic investigations? RQ3: How can the identified studies be 
categorized or classified under an optimized schema for digital forensic 
investigations? RQ4: In what areas are the current systematic mapping 
studies of digital forensic investigations lacking?

This chapter explores digital forensic investigations (DFI) with regard to 
artificial intelligence (AI) and automation based on the systematic snapshot 
mapping (SSM) research methodology. Many researchers have drawn on 
this methodology to obtain and optimize information and to create, from 
unstructured data, a structured system for decision-making, as shown by F. 
Alghamdi, N. Hamza, and M. Tamimi [3–5].

15.2 MATERIALS AND METHODS

Adaptation of the systematic snapshot mapping (SSM) approach for digital 
forensic investigations is described in this section, along with supplemen-
tary categories of factors that artificial intelligence and automation explore. 
This methodology deals with a mass of research papers in an effective man-
ner by organizing information from unstructured data systematically and 
extracting valuable pieces of information. The implementation of this meth-
odology is drawn from Tamimi, Moutasm, et al. [4–6].

15.2.1  Search strategies

In this subsection, using an amalgamation of logical and specific keywords 
as well as search strings our research strategy successfully sums up the full 
scope regarding digital forensics investigations and artificial intelligence. 
Papers appearing from 2016 to 2023 mark significant progress in the sci-
ence of digital forensics and artificial intelligence. Use of “AND” and “OR” 
in a skilled manner enhances research library searches and produces more 
focused and meaningful results.

15.2.2  Data source and retrieval

In describing the methods in this chapter, keywords combinations in search 
engines and inclusion exclusion processes were employed. The inclusion 
processes started with defining the time range for completing research pub-
lications, which range from 2016 to 2023. The following stage was identifi-
cation of different types of research publications, such as research journals, 
review journals, open access journals, conference papers, and conference 
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proceedings. On the opposite side, the other inclusion criterion consisted 
of stating the language that will be used for the manuscript, preferably 
English. We focused mainly on data sources collected from academic data-
bases, such as PubMed, IEEE Xplore, Scopus, etc. Lastly, the quality of 
research papers is assessed according to clear research questions based on 
study of design sampling methods, data collection techniques, statistical 
analyses, results reporting, and other relevant criteria.

15.2.3  Data extraction and mapping process

To conduct a systematic review, the data extraction and mapping process is 
shown in Figure 15.1. The process starts with a search string, employed to 
identify relevant studies for the digital forensic investigation (DFI). The ini-
tial search yielded a substantial number of studies, resulting in 350 research 
papers. Inclusion/exclusion criteria are then applied to refine the list to 150 
research papers. Following this, the full text of the studies is once again 
reviewed. The final review includes an assessment of study quality with 
input from our experts, leading to the acceptance of 25 research papers for 
further classification and exploration. In summary, Figure 15.1 provides a 
clear and concise depiction of the study selection process for a systematic 
review.  

Figure 15.1  Data extraction and mapping process
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15.3  RESULTS

15.3.1  Findings of primary DF classification

The section shows a table of dimensions and sub-factors of a systematic 
snapshot mapping based on the 25 accepted and gathered research papers 
from the data extraction and mapping process. The table schema is divided 
into five sections: dimensions, factors, sub-factors, issues, and references. 
The dimensions are the high-level categories that the project treats. The 
factors are the more specific elements in which each dimension is assessed. 
The issues are the potential problems that could be solved in each area. The 
findings revealed that the dimensions of digital forensics (DF) are planning 
(addressed in 20 reviewed studies), analyses and design (addressed in five 
studies), development (addressed in five studies), and release (addressed in 
two studies). on digital forensics (DF) (Table 15.1).

15.3.2  Findings of research methodology 
classifications

Figure 15.2 shows that of the statistical classification of the publications 
in the systematic review, the majority of the publications in the system-
atic review used a conceptual methodology (seven publications), followed 
by experimental methodology (four publications), systematic review (four 
publications), survey (three publications), and literature review (three pub-
lications). A total of two publications used ontology engineering and two 
publications used case studies.  

15.3.3  Findings of years of published classification

In Figure 15.3, the line graph shows the number of publications in each 
year of the systematic review. The number of publications has increased 
steadily over time, with the highest number of publications in 2022 (10 
publications). This suggests that there is a growing interest in the topic of 
the systematic review. The year with the fewest publications is 2016 (one 
publication). This could be due to several factors, such as the time it takes 
to conduct a systematic review or the fact that the topic of the systematic 
review was not as well established in 2016.  

15.3.4  Findings of types of published classifications

Figure 15.4 shows the findings of the types of publication classifications in 
the systematic mapping. The table shows the following: The most common 
type of publication assembled in the DF was journal articles (19 publica-
tions). The conferences were three articles and preprints were three articles. 
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The overall findings of the statistical analysis are positive. Our systematic 
review is analyzed based on a variety of high-quality articles.  

15.4  DISCUSSION

AI has the potential to automate many tasks involved in digital forensics, free-
ing up investigators to focus on more complex and strategic tasks. Research 

Figure 15.2  Biograph of findings of research methodology classification

Figure 15.3  Line graph of findings of years of published classification
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Figure 15.4  Types of publication classifications

on artificial intelligence (AI) by digital forensics [13] has several dimensions 
and factors. Many researchers who focus on cybersecurity integrated with 
AI face a variety of difficulties regarding several aspects of digital foren-
sics (DF), including network applications, data from unauthorized access, 
usage, disclosure, disruption, modification, or destruction. Pandey et al. in 
2020 divided the challenges into three sub-categories, namely, source related 
issues, law-related issues, and process-related problems. 2019 divided the 
challenges into six sub-categories, including network security [23] and appli-
cation security; operational security; information protection for end users, 
which includes employees within an organization to protect themselves from 
cybersecurity threats; a poor supply of memory-based forensics; insufficient 
standards; as well as procedures that would help to confirm the need for DF 
tools [23, 25]. The difficulties associated with digital forensics (DF) can also 
be classified as technical challenges and moral challenges. Related to the 
rapid expansion of digital devices, software platforms, various OSs, and the 
emergence of smartphones, the Internet process distribution across multiple 
locations and via cloud computing systems makes it harder to develop stan-
dardized DF tools and processes. Ethical issues include the lack of adequate 
protection of individuals regarding privacy preservation when their digital 
evidence is under analysis. There are also no clearly defined legal rules that 
should govern the utilization of DF tools and methods [24].

15.5  CONCLUSION

This study aimed to investigate the effects of artificial intelligence (AI) on 
digital forensic investigation in obtaining a systematic snapshot of map-
ping research methodology. After defining the research question; collecting 
relevant sources of information (25 articles); and data analysis, including 
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a description based on a defined schema of classifications, the aim was to 
give an overall assessment. The last step entailed the division of the results 
obtained from the SSM study into two main parts. The first part describes 
the results obtained by software development life cycle (SDLC) and infor-
mation systems (IS) as well as dimensions factors, sub-factors, and glos-
sary issues. Many studies emphasize the planning phase, outlining multiple 
aspects of management problems particularly concerning data organization 
for knowledge representation. The second part outlines the results obtained 
from the statistical research methodology and shows that articles predomi-
nate in conceptual methodology for DFI. The year 2022 saw the highest 
number of publications, with ten articles. As for the types of publication, 
most DF articles were located in journals. Overall, AI is predicted to play a 
significant role in digital forensics. It also holds the potential for enhancing 
digital forensic investigations in terms of efficiency, accuracy, and effec-
tiveness. However, we must remain aware of possible risks and challenges 
associated with AI implementation in this sphere.
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Chapter 16

The impact of ChatGPT 
on cybersecurity

Balancing benefits against risks

Mohamed Zaoui and Yassine Sadqi

16.1  INTRODUCTION

In recent years, the rapid advancement of artificial intelligence (AI) and 
natural language processing (NLP) technologies has revolutionized various 
aspects of our lives and the way humans interact with machines [1]. Among 
these innovations, ChatGPT, developed by OpenAI, has emerged as a pow-
erful language model capable of generating human-like text [2]. Trained 
on vast amounts of text data, ChatGPT possesses a remarkable capabil-
ity to comprehend context, analyze language patterns, and generate coher-
ent responses [3]. As organizations and individuals increasingly integrate 
ChatGPT into various applications, including cybersecurity, it becomes 
imperative to critically examine its implications. The ability to generate 
human-like text raises questions about the potential misuse of these tech-
nologies for creating sophisticated phishing attacks, launching disinforma-
tion campaigns, and generating malicious code as well as other forms of 
cybercrime. Understanding these implications is essential for developing 
effective countermeasures and ensuring the responsible deployment of AI 
language models in cybersecurity contexts [4]. The purpose of this chap-
ter is to examine the intersection of ChatGPT and cybersecurity, explor-
ing the potential benefits and drawbacks associated with the integration 
of advanced language models like ChatGPT into cybersecurity practices. 
Through a comprehensive evaluation and analysis of the potential impli-
cations of ChatGPT in the context of cybersecurity, this chapter aims to 
provide insights into the opportunities and challenges associated with the 
use of AI-driven technologies in safeguarding digital assets and combating 
cyber threats. The primary objectives of this research chapter include:

 1. Investigating how ChatGPT can enhance cybersecurity practices.
 2. Evaluating the potential risks linked to ChatGPT’s application in 

cybersecurity.
 3. Providing practical recommendations for the responsible utilization of 

ChatGPT in cybersecurity.
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Through addressing these objectives, this chapter aims to contribute to a 
comprehensive understanding of the implications of integrating ChatGPT 
into cybersecurity practices and to provide valuable insights for researchers, 
practitioners, and policymakers in the field. The remainder of the chapter is 
organized as follows. Section 2 provides an overview of ChatGPT. Section 
3 discusses the impacts of ChatGPT on cybersecurity. Section 4 presents 
recommendations for the secure utilization of ChatGPT. Finally, Section 5 
concludes this research chapter.

16.2  OVERVIEW OF CHATGPT

16.2.1  What is ChatGPT?

ChatGPT, developed by OpenAI and launched on November 30, 2022, is 
an advanced artificial intelligence (AI) language model built on the genera-
tive pretrained transformer (GPT) architecture. The GPT model is a deep 
learning algorithm allowing ChatGPT to understand and generate human-
like text based on the input it receives [5, 6].

• Generative: ChatGPT can create text and images based on the pro-
vided input, demonstrating its capability as a generative AI to generate 
human-like responses.

• Pre-trained: Before its launch, the model was trained on vast amounts 
of text data, utilizing unsupervised learning techniques. This method 
enabled the model to autonomously learn and refine its language com-
prehension abilities without direct instruction.

• Transformer: The transformer, an advanced deep-learning architec-
ture, utilizes attention mechanisms to comprehend the context in text 
inputs, facilitating the generation of coherent responses. Essentially, 
transformers mimic human understanding by grasping word relation-
ships and connections in sentences, focusing on relevant words while 
ignoring irrelevant ones.

16.2.2  How ChatGPT works

The training process: The training process of ChatGPT involves two 
main phases:

 1. Pre-training: ChatGPT goes through a pretraining stage where 
it is trained on a diverse dataset from the Internet. This process 
involves unsupervised learning, where the model learns to predict 
the next word in a sentence given the words that precede it. The 
model processes massive amounts of text, learning language pat-
terns, grammar, and even general knowledge [3].
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 2. Fine-tuning (also known as supervised learning): After pretrain-
ing, ChatGPT undergoes a fine-tuning process. During this stage, 
the model is trained on a narrower dataset, often tailored to spe-
cific tasks or domains. This allows ChatGPT to perform well on 
tasks like text completion, question answering, and conversation 
generation with greater accuracy [7].

The role of reinforcement learning: OpenAI has enhanced the capa-
bilities of ChatGPT through reinforcement learning from human 
feedback (RLHF). This methodology involves training the model to 
optimize its responses based on preferences indicated by human train-
ers. The human feedback helps in aligning the model’s responses with 
more nuanced, contextually relevant, and ethically aligned answers 
[8]. Generating text with ChatGPT: ChatGPT generates responses 
through a process that involves decoding the input text, understand-
ing the context, and predicting the next most probable series of 
words. This process is iterative and can be fine-tuned to generate dif-
ferent styles of responses, control the length of the output, and ensure 
relevance and coherence in the conversation [3]. The text generation 
process proceeds as follows:

 1. Input processing: The input text is converted into tokens, which 
can represent words or pieces of words. These tokens are then 
transformed into numerical vectors that the model can understand.

 2. Contextual understanding: Using the transformer’s self-attention 
mechanism, ChatGPT analyzes the input tokens in context, deter-
mining the relevance of each word to the others.

 3. Output generation: The model predicts the next word based on the 
input and its learned patterns. This process is repeated for each 
new word until the model generates a complete response.

16.3  IMPACTS OF CHATGPT ON CYBERSECURITY

ChatGPT has significantly influenced the cybersecurity landscape, offer-
ing both protective benefits and posing potential threats. On the positive 
side, its advanced AI capabilities enable rapid detection and response to 
cyber threats, improving security protocols and safeguarding sensitive data. 
Additionally, ChatGPT can simulate cyberattack scenarios, allowing orga-
nizations to bolster their defenses proactively. However, the technology’s 
adeptness at understanding and generating human-like text also opens ave-
nues for misuse, such as generating malicious code, creating sophisticated 
phishing emails, or fabricating believable social engineering attacks. This 
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Figure 16.1  ChatGPT’s refusal to generate malicious code

dual impact underscores the need for careful and responsible utilization of 
ChatGPT within cybersecurity practices to maximize its protective advan-
tages while minimizing the risks of exploitation.

16.3.1  Risks associated with ChatGPT 
in cybersecurity

Generation of malicious code: ChatGPT could potentially be used to 
generate malicious code, disguised as benign text. This code could 
then be distributed via phishing emails, malicious websites, or other 
channels, leading to unauthorized access to systems, data breaches, or 
financial loss [4].

Malware code generation: Malware poses ongoing risks in today’s digital 
landscape. Malware refers to software that is discreetly installed on a 
computer without the user’s explicit permission and carries out mali-
cious actions, such as stealing sensitive information. Ransomware is 
a specific type of malware that aims to restrict access by individuals 
or organizations to computer files by encrypting them and demand-
ing payment for decryption. Cybercriminals put organizations into a 
situation where paying the ransom becomes the most convenient and 
cost-effective method to regain access to their files. Creating such mali-
cious software typically requires advanced expertise and considerable 
time investment. However, this process might be automated by lever-
aging a sophisticated AI model such as ChatGPT [4, 9, 10]. However, 
as seen in Figure 16.1, ChatGPT declined to generate the malicious 
code, citing concerns about its appropriateness and safety. When the 
system refused to produce the code following its principles and ethical 
standards, users tried various approaches, such as asking and insisting 
by playing on words, and the result was the code shown in Figure 16.2.    

Exploiting ChatGPT for DOS attacks: While AI models are designed to 
enhance user experience and efficiency, they also present a potential 
security vulnerability when in the wrong hands. One such avenue of 
exploitation is the generation of malicious code for denial of service 
(DOS) attacks, posing significant risks to organizations and individuals 
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alike [9]. A DoS attack is a malicious attempt to disrupt the normal 
functioning of a target system, network, or service by overwhelming it 
with a flood of traffic, requests, or data. The goal is to render the tar-
get unavailable to its intended users, either temporarily or indefinitely 
[11]. It is imperative to note that ChatGPT, similar to other AI mod-
els, does not naturally generate malicious code. However, a malicious 
actor could attempt to manipulate the AI model by persistently engag-
ing with it and gradually steering the conversation toward obtaining 
malicious code for a DOS attack, as shown in Figure 16.3.  

Social engineering assistance: Social engineering attacks involve manipu-
lating individuals into divulging confidential information, performing 
actions, or compromising security measures through psychological 
manipulation rather than technical means [12]. Verizon’s 2023 Data 
Breach Investigations Report revealed that 74% of data breaches 
involve the human element, encompassing errors, misuse of privileges, 
or social engineering techniques [13]. ChatGPT could be leveraged 
to facilitate social engineering attacks due to its ability to generate 
convincing text.

Crafting convincing phishing messages: Attackers could use ChatGPT 
to generate highly convincing phishing emails or messages that mimic 
the tone, style, and vocabulary of legitimate communications from 
trusted organizations (see Figure 16.4) Phishing attempts, typically 

Figure 16.2  Ransomware code generation using ChatGPT
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Figure 16.3  DOS code generation using ChatGPT

Figure 16.4  An example of a phishing email crafted using ChatGPT
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recognized for their grammar and spelling mistakes, are enhancing 
message quality through the use of AI. This can significantly increase 
the likelihood of recipients being deceived into divulging sensitive 
information or taking actions that compromise security [14].  

Generating pretexting scenarios: Pretexting involves creating a fabri-
cated scenario or pretext to deceive individuals into disclosing infor-
mation or performing actions they would not normally do. ChatGPT 
could assist social engineers in crafting elaborate pretexts by generat-
ing plausible explanations, backstories, or requests that exploit the 
victim’s trust [15].

Data privacy concerns: While ChatGPT as well as other AI-based chat-
bots provide numerous benefits for organizations and individuals 
alike, they also present issues with data privacy concerning how the 
data is handled [16]. According to OpenAI, the company collects per-
sonal information when a user creates an account, uses their services, 
or interacts with them on social media. This includes account details, 
communication information, and content provided by the user. The 
company also gathers technical information like IP addresses and 
usage data automatically when users use its services. Cookies are used 
for operation and analytics based on the privacy policy of OpenAI 
[17], which allows the company to access any information or data it 
is fed. The company clearly states that: “In certain circumstances we 
may provide your Personal Information to third parties without fur-
ther notice to you, unless required by the law.”

In April 2023, OpenAI introduced data privacy controls [18], enabling 
users to maintain their privacy on ChatGPT by deactivating the chat 
history through the Settings menu (Setting > Data controls > Chat 
history & training). As per OpenAI’s policy, disabling chat history 
ensures that conversations are retained for a maximum of 30 days. 
Post this duration, conversations are permanently removed, except in 
cases where the content violates legal or behavioral standards.

Generation of misinformation: ChatGPT produces responses by leverag-
ing insights and patterns acquired through training data. However, the 
model may generate inaccurate or deceptive data. The system cannot 
conduct fact checks or verifications on the information it generates. 
Adversaries could exploit this vulnerability to spread misinformation 
and deceive users into believing it, which could lead to significant con-
sequences for cybersecurity. For instance, misinformation generated 
by ChatGPT could be used in social engineering attacks to deceive 
individuals into revealing sensitive information, clicking on malicious 
links, or downloading malware [4, 16].
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16.3.2  Benefits of ChatGPT in cybersecurity

Strengthen cybersecurity awareness: In the cybersecurity field, where the 
human element is often considered the weakest link [19], ChatGPT 
emerges as a pivotal tool for bolstering cybersecurity awareness and 
readiness through a multifaceted approach. Through its conversa-
tional abilities and extensive knowledge, ChatGPT can significantly 
enhance cybersecurity awareness by providing educational content 
on best practices, engaging users in interactive discussions about 
cyber threats, simulating real-life cyberattack scenarios for training 
purposes, offering 24/7 support for cybersecurity queries, delivering 
personalized recommendations, keeping users updated on emerging 
threats, promoting a cybersecurity culture, and recommending addi-
tional resources to equip users with the knowledge and skills needed 
to recognize and respond effectively to potential threats [20].

Incident response support: In the event of a cybersecurity incident, time 
is of the essence. ChatGPT can aid in rapid response by automat-
ing the analysis of the incident, suggesting mitigation strategies, and 
even drafting communications to stakeholders, thereby reducing the 
incident’s impact and recovery time. Integration of ChatGPT into 
existing workflows ensures real-time collaboration, streamlining inci-
dent management processes. While it may not suffice for all tasks, 
its capacity for automating data collection and tedious tasks opens 
avenues for improved incident response KPIs (key performance indi-
cators) and enhanced agility in confronting evolving cybersecurity 
challenges [4, 20].

Enhancing threat intelligence: Threat intelligence refers to the process 
of collecting, analyzing, and disseminating information about poten-
tial cybersecurity threats and risks. It involves gathering data from 
various sources such as network traffic, system logs, social media, 
dark web forums, news articles, social media, cybersecurity reports, 
and other online platforms [20]. Threat intelligence is paramount in 
the ongoing battle against cyber threats, and ChatGPT plays a piv-
otal role in enhancing this vital aspect of cyber defense [21]. With its 
natural language processing capabilities and the ability to process, 
understand, and analyze vast amounts of data, Chat GPT can quickly 
analyze patterns and identify potential indicators of compromise. 
Security analysts benefit from its interactive capabilities as ChatGPT 
assists in comprehending the latest attack techniques, identifying vul-
nerabilities, and predicting potential cyber threats [4].

Automating security operations: One of the most significant benefits 
of integrating ChatGPT into security operations is the automation 
of routine tasks. Traditionally, security teams spend a substantial 
amount of time on repetitive activities such as patch management and 
vulnerability scanning. These tasks are not only time-consuming but 
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also prone to human error. ChatGPT can automate these processes, 
allowing security teams to focus on more strategic activities [22].

16.4  RECOMMENDATIONS FOR SECURE 

USAGE OF CHATGPT

As ChatGPT and similar AI technologies become increasingly integrated 
into our digital lives and workflows, it is vital to employ security prac-
tices that ensure secure and responsible usage. To maximize the benefits of 
ChatGPT while minimizing the potential risks, individuals and organiza-
tions should consider the following recommendations:

• Establish clear usage policies and guidelines: Organizations should 
develop and implement clear guidelines and comprehensive policies 
governing how to use ChatGPT within the organization. These poli-
cies should include ethical considerations, especially regarding data 
privacy and the handling of sensitive information, outlining the 
appropriate use cases, limitations, and potential risks associated with 
the technology.

• Validate and verify outputs: While ChatGPT can provide valuable 
insights and suggestions, validating and verifying its outputs before 
implementing them in real-world scenarios is crucial. Human experts 
should review and confirm the accuracy, relevance, and safety of the 
generated content.

• Limit sensitive information: When using ChatGPT for cybersecurity 
purposes, avoid sharing highly sensitive or confidential information 
as the data used to train the model may be accessed by unauthorized 
parties.

• Provide training and awareness: Organizations should educate their 
cybersecurity teams and employees about the capabilities, limitations, 
and potential risks of using AI technologies like ChatGPT. Training 
sessions should cover best practices for secure usage and encourage 
employees to report any concerns or suspicious activities related to 
ChatGPT usage.

• Establish a response plan: Develop a clear incident response plan to 
address any potential security breaches or misuse of ChatGPT. This 
plan should outline the steps to be taken to contain the incident, inves-
tigate the cause, and prevent future occurrences. Regularly review and 
update this plan to ensure it effectively addresses evolving threats and 
risks.

• Monitor usage: Limit the use of ChatGPT to authorized personnel 
only. Regularly monitor the usage of ChatGPT within the organiza-
tion to detect any suspicious activities or potential misuse. Implement 
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logging and auditing mechanisms to track user interactions and iden-
tify any anomalies or security incidents.

16.5  CONCLUSION

In the realm of technology, ChatGPT stands as a double-edged sword that 
has significantly influenced the landscape of cybersecurity, offering notable 
protective advantages while presenting potential threats. On the one hand, 
the technology’s sophisticated natural language processing capabilities have 
the potential to greatly enhance threat detection, incident response, and 
security automation. ChatGPT can aid in analyzing extensive data, rec-
ognizing patterns, and generating insights that bolster an organization’s 
security readiness. Conversely, the study also highlights the potential risks 
associated with ChatGPT, including its susceptibility to misuse by malicious 
actors for social engineering attacks, phishing schemes, the creation of con-
vincing fake content, and the generation of malicious code. To maximize 
the benefits of ChatGPT while minimizing the potential risks, this chapter 
provides a variety of recommendations for the secure and responsible utili-
zation of this sophisticated tool. This involves establishing clear guidelines 
and policies governing technology usage, providing appropriate training 
for security personnel, and implementing robust safeguards to prevent mis-
use. Additionally, continual research and collaboration among academia, 
industry, and policymakers are essential to address ethical considerations 
and develop best practices for the responsible integration of ChatGPT in 
cybersecurity.
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Chapter 17

Design of an unpredictable 
secure PRNG using collaborative 
linear feedback shift registers

Lahcen Oumouss, Younes Asimi, 
Ahmed Asimi, and Rguibi Arjdal

17.1  INTRODUCTION

Random numbers have extensive application in many fields, including 
simulation and cryptography. Sometimes the use of random numbers is of 
particular importance in sensitive sectors such as cryptography, where the 
generation of reliable random numbers is crucial to ensure data confidenti-
ality and secure communications.

To produce random numbers we use random number generators (RNG), 
which can be classified into two categories: true random number genera-
tors (TRNG), which are based on sources of randomness such as physical 
phenomena (thermal noise, atmospheric noise, etc.), mouse movements, iris 
[2, 3, 17]. TRNGs are generally too slow and require additional devices. 
The second class is the class of pseudo-random number generators (PRNG). 
These numbers are generated by deterministic algorithms, from an initial 
value called “seed.” Although these numbers appear random, they are 
actually predictable because the same seed will always produce the same 
sequence of numbers. The notations and their significations are depicted in 
Table 17.1.

17.2  RELATED WORK

The most robust cryptographic systems use the theory of polynomials over 
finite fields to build their algebraic structure [4, 9–13, 15, 16]. Idem, they 
use it to construct the linear feedback shift register (LFSR) [4]. LFSRs are 
fundamental structures in the design of pseudo-random number genera-
tors (PRNG), particularly in embedded systems and applications requiring 
limited resources. An overview of related work regarding the use of LFSRs 
in PRNGs follows.

Younes and Ahmed [4] proposed to combine LFSRs, the arithmetic 
of quadratic fields, filtration of linear feedback shift registers LFSRs 
with a primitive polynomial of length eight, random balancing func-
tion, and Boolean functions. This robust solution confirms the concrete 
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security by its ability to conserve the unpredictable nature of each regen-
erated primitive signal. They aim to have a synchronous generator that 
achieves the unpredictable behavior of the internal and external states. 
This primitive signal improves its sturdiness by its ability to take as 
input the secrets of arbitrary length. Cerda et al. [5] suggested adopting 
a hybrid configuration to produce pseudo-random sequences. This con-
figuration merges two frequently employed methodologies in pseudo-
random number generation: linear feedback shift registers (LFSR) and 
cellular automata (CA) [17–21].

Alam Shadab et al. [6] present a study that examines the use of linear 
feedback shift registers (LFSRs) in stream ciphers, highlighting the advan-
tages and limitations of these techniques. On the other hand, we find other 
works based on other concepts, such as Abderrahim et al. [7] proposed a 
random sequence generator inspired by revolutionary algorithms, notably 
genetic algorithms. Hosseini et al. [8] designed a PRNG based on a combi-
nation of the random behavior of several ants and the organized behavior 
of cellular automata. Don Coppersmith et al. [14] proposed the shrinking 
generator, a form of pseudo-random number generator for use in a stream 
cipher. This generator uses two linear feedback shift registers; one generates 
output bits while the other controls their output. In this work, we combine 
several LFSRs of different characteristics in order to improve the quality 
and security of the generated random sequences. To evaluate the crypto-
graphic quality of these generated sequences, we will use standardized 
test batteries such as the National Institute of Standards and Technology 
(NIST) [1] test suites.

Table 17.1  Notations used and their significations

Notation Signification

n,p,k natural numbers

~s the complement of the integer s

{0,...,n} set of natural numbers from 0 to n

n/p: the integer division of n by p

n*p the multiplication of n by p

card(E) cardinal of set E

C(n,p) n!/((n-p)!*p!)

Ci combination number i

G square grid of n*n cells

DpG the set of cells on the main diagonal of G

DsG the set of cells of the secondary diagonal of G

DG union of DpG and DsG

XOR exclusive OR

NXOR negative exclusive OR
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17.3  LINEAR FEEDBACK SHIFT REGISTER

A linear feedback shift register (LFSR) is composed of flip-flops connected 
in series, where the output of each flip-flop is fed back into the circuit 
through a linear combination of some of its outputs. It is characterized by:

Size n: determines the number of bits stored or manipulated.
Shift direction: determines in which direction the bits are shifted in each 

iteration, namely, right shift or left shift.
Feedback operator: determines how the output bits of the register are 

combined to generate the new bit that will be injected into the register 
on the next iteration. This operator can be XOR (exclusive) or NXOR 
(non-exclusive).

Characteristic polynomial: binary polynomial whose coefficients corre-
spond to the positions of the bits of the LFSR that participate in the 
feedback operation. Each non-zero term in the polynomial indicates 
the position of the bit included in the feedback calculation.

To be able to use LFSR in our algorithm, we modeled it using a class that 
has the following properties:
size: integer variable, which models the size of LFSR.
currentSequence: Array of integers representing the current state of 

the LFSR or the current sequence stored in the LFSR.
shiftDirection: of integer type, which models the shift direction, this 

variable receives 0 if the LFSR shift direction is from right to left, 
and it receives 1 if the LFSR shift direction is from left to right.

feedOperator: of integer type, which implements the feedback opera-
tor. This variable receives 0 if the feedback operator used in LFSR 
is XOR and receives 1 if the operator used is NXOR.

characteristicPoly: array of integers of the same size as LFSR. This 
property models the characteristic polynomial of LFSR, each ele-
ment characteristic Poly[i] receives 0 if the LFSR bit at position i 
participates in the feedback operation and receives 1 otherwise.

17.4  OUR PROPOSAL

The objective of this work is to develop a pseudo-random number genera-
tor (PRNG) that is based on a deterministic algorithm and an initial value. 
This algorithm is composed of two fundamental phases: initialization and 
execution.

17.4.1  Initialization phase

The main goal of this phase is to prepare the algorithm for its execution by 
configuring the necessary data structures, variables, and initial parameters. 
This involves instantiating and initializing the various classes that model 
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the grid and the LFSRs used by the algorithm. This phase includes the fol-
lowing steps:

Step 1: The creation of a square grid G composed of n*n cells, which 
will be configured with the binary sequence derived from the initial 
value s.

Step 2: In this step, we construct sets of cells from the cells of the grid G 
created previously. These sets are as follows:
The set EG: contains all the cells of the grid G.
The set EDG: contains the cells of the two diagonals: main and sec-

ondary of G.
The set ESG1: contains the cells of the sub-grid of grid G by selecting 

the rows from 0 to n/2 and the columns from 0 to n/2.
The EDSG1: contains the cells of the two diagonals (main and second-

ary) of the sub-grid of the grid G by selecting the rows from 0 to 
n/2 and the columns from 0 to n/2.

The set ESG2: contains the cells of the sub-grid of grid G by selecting 
the rows from 0 to n/2 and the columns from n/2 to n.

The EDSG2: contains the cells of the two diagonals (main and sec-
ondary) of the sub-grid of the grid G by selecting the rows from 0 
to n/2 and the columns from n/2 to n.

The set ESG3: contains the cells of the sub-grid of grid G by selecting 
the rows from n/2 to n and the columns from n/2 to n.

The EDSG3: contains the cells of the two diagonals (main and sec-
ondary) of the sub-grid of the grid G by selecting the rows from 
n/2 to n and the columns from n/2 to n.

The set ESG4: contains the cells of the sub-grid of grid G by selecting 
the rows from n/2 to n and the columns from 0 to n/2.

The EDSG4: contains the cells of the two diagonals (main and sec-
ondary) of the sub-grid of the grid G by selecting the rows from 
n/2 to n and the columns from 0 to n/2.

Step 3: The previously trained EG, ESG1, ESG2, ESG3, ESG4, EDSG1, 
EDSG2, EDSG3, and EDSG4 sets are used in this step to create 
LFSRs. For each set E among the mentioned sets, LFSRs are created 
using the cells of this set. This is achieved by generating all possible 
combinations of p (where p ≤ card(E)) cells among those in the set, 
with p being a parameter approximating card (E) in order to limit the 
number of combinations generated.

Step 4: During this step, all the characteristics of each previously created 
linear feedback shift register (LFSRi) are initialized, using the binary 
sequence of seed s combined with the binary sequence of its comple-
ment ~s.
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17.4.2  Execution phase

In this phase, we perform the fundamental operations specified by the 
algorithm, which involve selecting LFSRs, initiating their execution, and 
obtaining the resulting binary sequence. This phase can be broken down 
into the following steps:

Step 1: In this step only one LFSR is selected from each set of LFSRs cre-
ated in the previous phase, then the LFSRs thus selected are activated 
for execution.

Step 2: To generate the output binary sequence of our PRNG, we use 
the eight diagonals (main and secondary) of the four previously men-
tioned sub-grids of the grid G of size n*n, based on the following 
instructions:
• Generate all C(8,p) combinations of p diagonals among the eight 

available diagonals, with p ≤ 8 parameter of the chosen algorithm 
close to 8.

• Combine the diagonals belonging to the same combination using 
the XOR operation.

• Merge the results of the XOR operations from the previous step.
At the end of this final phase, the algorithm returns a binary sequence 

whose size is determined by the formula C(8, p) * n / 2, where “p” is 
an internal parameter of the algorithm.

17.5  CONCLUSION

In this chapter, we introduced our pseudo-random number generator, 
developed from the collaboration of several LFSRs with different charac-
teristics. We have adopted an approach that begins with the representation 
of a square grid, then evolves toward the creation of LFSRs from the cells of 
this grid, and finally leads to the extraction of the output binary sequence. 
The PRNG described in this chapter has successfully passed the NIST SP 
800-22 test. The latter is a test suite recommended by NIST for evaluating 
the quality of pseudo-random number generators. It includes various sta-
tistical tests designed to detect defects in pseudo-random sequences. This 
achievement indicates that the sequences generated by our generator can 
be confidently used in cryptographic applications. In the future, we plan to 
subject our generator to further tests, such as Diehard and ENT, to further 
strengthen its reliability and suitability for an extended range.
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Chapter 18

Building trust with blockchain

Exploring its diverse applications

Mbarek Lahdoud and Ahmed Asimi

18.1  INTRODUCTION AND NOTATIONS

The past decade has witnessed the emergence of blockchains with the 
cryptocurrency bitcoin. Currently, blockchain technology is of interest in 
various domains such as banking, health care, logistics, livestock manage-
ment, and academia. As a decentralized system, it records all transactions 
between two participants (nodes) in an irreversible manner. These partici-
pants can be PCs, servers, or smartphones.

The ISO/TC307 committee, tasked with establishing standards for 
blockchain and distributed ledger technologies, convened for its fifth meet-
ing in Dublin from May 27 to June 3, 2019, following previous meetings 
in Sydney, London, Tokyo, and Moscow, to continue its standardization 
efforts [17].

In the blockchain system, consensus among nodes will replace the central 
authority to decentralize trust.

The blockchain is a technology of “peer-to-peer” transactions, which 
will be discussed below: each participant in the network can conduct trans-
actions with another participant directly and without intermediaries. The 
novelty lies in the fact that transactions are no longer stored in centralized 
databases but in a decentralized manner across all participating computers.

By extension, a blockchain constitutes a database that contains the his-
tory of all validated exchanges made between its users since its creation. 
Each user has an up-to-date copy of the database on their PC.

The said database is a sequence of blocks, starting from block O [genesis 
block], which record transactions between users.

The blockchain is, in principle, unalterable (due to the hashing linkage 
[e.g., SHA256]).

According to [1–6], three basic types of Blockchains exist:

• Public blockchain where all records are visible to all participants, and 
everyone can participate in the consensus.

• Consortium blockchain pre-selects the nodes participating in the 
consensus.
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• Private blockchain in which the consensus nodes are chosen by a spe-
cific organization.

Additionally, [2] reports the existence of three (3) generations in the evolu-
tion of the blockchain:

• 2009: the first blockchain supporting bitcoin, cryptocurrency, crypto-
currency exchange, etc.

• Asset exchange.
• Smart contracts.

Popular applications using the blockchain are: [16]

• Bitcoin: Public network for the bitcoin cryptocurrency.
• Ethereum: Public network for cryptocurrency and smart contracts.
• Ripple: Public network for currency transfer.
• Hyperledger: Consortium network for information transfer.
• R3 Corda: Private network for information transfer and smart con-

tract execution.

In this chapter, we will define the blockchain and its architecture; demon-
strate the main functionalities in the two levels representing the blockchain; 
examine transactions, blocks, and the chain; and review the two security 
tools, namely hashing and the use of the two keys (public and private) that 
ensure trust in the blockchain system.

In the current context marked by the pursuit of quantum supremacy, we 
will focus particularly on the component-based architecture and the tools 
ensuring the integrity of transactions, blocks, and the chain. Then we will 
provide examples of blockchain applications, and, finally, we will conclude.

Abbreviations

BC: Blockchain
VM: Virtual Machine
POW: Proof of Work
NIST: National Institute of 
Standards and Technology

POS: Proof of Stake
POSpace: Proof of Space
POI: Proof of Importance
IEEE: Institute of 
Electrical and Electronics 
Engineers

MOT: Measure of Trust
MBH: Minimum Block 
Hash

PBFT: Practical Byzantine 
Fault Tolerance

ANSI: American National 
Standards Institute

18.2  ARCHITECTURE

In the spirit of explanation, we will adopt the map proposed by [3], consist-
ing of four
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(4) levels, where the blockchain occupies the two lower levels, as depicted 
in Figure 18.1 [3].

18.2.1  Data and network layer (level 1)

This level establishes unique and secure identities for the nodes in the 
network, processes transactions, constructs blocks, and establishes cryp-
tographic dependency between records (blocks). Additionally, network pro-
tocols ensure the organization of peer-to-peer (P2P) resources and encrypt 
data during transmissions over links. The structure of the blockchain is 
briefly illustrated in Figure 18.2 [4].

Merkle tree: For a set of information (files, blocks, or transactions), the 
binary tree, which is of interest here, starts by hashing the initial collection 
pairwise. This operation is repeated until the root is obtained. (For the first 
and intermediate steps, if the number of elements is odd, it is supplemented 
by the double of the last subset.)

Strengths: Memory economy for storing hashes at node levels (light node) 
and speed for detecting and locating transactions by traversing a branch 
(root-leaf).

Weaknesses: An exchange with a node containing the entire blockchain 
(full node) is required for verification or correction. Additionally, vulner-
abilities (due to iterations) of the Merkle mode.

Vulnerabilities of the Merkle-Damgaard scheme (due to iterations) 
include:

• Collision recycling: repetitive use of a collision in the compression 
function.

• Length extension attack: if H(M) is known, then H(M||S) can be cal-
culated where S is an arbitrary string.

Figure 18.1  Functional architecture containing the blockchain
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• Multi-collisions: a problem discovered by A. Joux in 2014, related to 
the iterative nature of the compression function.

Peer to peer: A network where each node can act as a client, making requests 
or, as a server, providing responses and sharing memory space, computa-
tional power, and bandwidth with other nodes. Examples include Freenet, 
Gnutella, BitTorrent, and Napster.

Strengths: No single point of failure as all nodes receive and disseminate 
information; Weaknesses: Files stored in the shared space can be corrupted.
Haut du formulaire

• Transaction:
 A transaction is the data (message between twonodes) that is dissemi-

nated across the P2P network (Example: on bitcoin, Alice pays Bob 
2BTC); transactions include dates, addresses (cryptographic public 
keys or their hashes) of the sender and recipient, input and output 
transactions, the message itself, and the hash fingerprint of the trans-
action [the Hash algorithm will be detailed below].

 The instances form a queue (Transaction Pool)

• Block:
 The block (N) consists of 2 parts: a header and a body.

• The header: Block number – Hash of block (N) – Hash of block 
(N-1) – Merkle root of transactions – Nonce – “difficulty thresh-
old” (in the case of bitcoin) . . . [collection of metadata].

• The body: Transaction(1), Transaction(2), . . . Transaction(n).
 The candidate block is a file that contains validated transactions.
 In other words, the node verifies transactions, records the validated 

ones into a block, meets the prerequisites of consensus (e.g., finding a 

Figure 18.2  Structure of blockchain
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hash < Bitcoin’s POW threshold), and broadcasts the block to other 
participants in order to achieve “consensus.”

 Validation involves verifying the sender’s address and the properties 
(balance, assets) of the sender in relation to the blockchain to confirm 
or refute the transaction.

• Chain:
 The chain evolves by adding blocks, each of which contains the hash 

of its predecessor. This hash serves as the link that ensures the integ-
rity of the chain.

• Security:
 In this regard, it is worth noting that cryptography plays a key role 

in the security of the blockchain system and manifests itself in four 
forms:
• Hash function: (e.g., MD5, SHA-1, SHA-2, SHA-3, etc.) to gen-

erate a unique fingerprint for a file (consisting of one or multiple 
transactions, a block, etc.), thereby ensuring integrity.

• Public and private cryptographic keys (RSA, ECC, etc.): to encrypt/
decrypt, sign a document, and authenticate a user.

• Zero knowledge proof: to prove and verify without revealing any 
secret information.

• Homomorphic encryption: to perform computations on encrypted 
files.

Therefore, the reinforcement of decentralized trust is facilitated by the secu-
rity algorithms in the blockchain.

On the other hand, the security services of the blockchain are summa-
rized in Table 18.1.

However, [5] reports that standardized elliptic curves by NIST, IEEE, 
and ANSI may have weaknesses (e.g., NIST-256, etc.) and could contain 
backdoors. The standardized curves are listed in [15].

Furthermore, [7] and [8] demonstrate, through the tables below, that key 
sizes and resource allocation capacities are superior in ECC compared to 
RSA.

Key Size: Table 18.2

Encryption/Decryption Time: Table 18.3
This makes ECC suitable for smartphones, tablets, and “small” connected 
devices: less computation, less memory, less energy compared to RSA.

Additionally, the total encryption/decryption time is better in ECC than 
in RSA starting from a security level of 112 bits.

Furthermore, the improvement in the size of the blockchain network 
enhances trust, as decisions are made by consensus.
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18.2.2  Consensus layer (level 2)

This layer ensures the uniqueness, consistency, the order of data, the agree-
ment among nodes, and the grant of incentives. Mining, for example, grants 
the right to add a block to the blockchain with validation from the major-
ity. The blockchain evolves solely through the addition of blocks. The mass 
addition of a block to the blockchain signifies that a consensus has been 
reached among the nodes.

If two blocks are issued at the same time (or nearly the same time), the 
blockchain will experience a fork: the longest chain will dominate (due 
to the majority agreement of participants), and the transactions from the 
rejected branch will be compared to those of the retained branch, with the 
remaining transactions added to the queue (Table 18.4).

It is interesting to note that all consensus models lie between the two 
extremes of POW and PBFT. Furthermore, those developed after bitcoin 
(PoW) were more energy efficient, proving that consensus can still be 
achieved effectively without requiring a huge amount of computational and 
electrical resources in an environmentally friendly manner.

18.3  APPLICATIONS

18.3.1  Literature survey

The landscape of health-care technology has seen various approaches, and 
in this section we provide an overview of related works that have explored 
different aspects of health-care technology and its potential applications.

In [9], a comprehensive analysis of IoT in health care is presented, empha-
sizing the layered approach, a taxonomy of IoT devices, and an application 
that leverages the cloud for data exchange between patients and health-care 
providers. This work focuses on the importance of remote patient monitor-
ing, highlighting the significance of collecting and analyzing data from IoT 
devices. However, it may not fully address the urgency of managing chronic 
diseases, which require early intervention.

Table 18.2  [8] Niveaux de sécurité recommandés par le NIST

Niveau de sécurité (en bit) RSA ECC

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 512
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In [10], the concept of the blockchain and digital twins is introduced, 
highlighting the use of trusted blockchain layers to represent individuals 
through avatars. While the role of blockchain in securing digital twin data 
is emphasized, IoT devices are not a central focus in this work. The paper 
also does not delve deeply into the challenges associated with chronic dis-
eases and the potential for AI to support health-care personnel.

In [11], the use of IoT sensors for tracking patients is discussed, with a 
specific focus on applications using mobile devices. This approach is valu-
able for monitoring patients’ physical activities and vital signs, which is 
crucial for health care. However, it may lack a comprehensive solution for 
chronic disease management, where AI and digital twins can play a signifi-
cant role in early detection and intervention.

In the field of livestock management, we consider the three examples 
revolving around third-party trust blockchain. The article [12] outlines 
the significance of animal husbandry in Chinese agriculture, emphasizing 
its substantial contribution to agricultural output and farmers’ income. 
However, it also highlights the risks facing this industry, such as disease 
outbreaks and market fluctuations. To mitigate these risks, it proposes an 
environmental regulatory platform for livestock sheds, utilizing blockchain 
and the Internet of Things to ensure data authenticity and regulatory trans-
parency. This platform also automates the insurance process, reducing 
costs and enhancing efficiency. Through the use of blockchain and IoT, 
the platform enables real-time monitoring and ensures data authenticity, 

Table 18.4  Popular mechanisms [2]

Technique Description

POW Find a hash (block) < N (an integer set by the system to adjust difficulty); 
the first miner to find the solution broadcasts it for verification and 
validation. Drawback: Energy waste.

POS Random selection of the miner weighted by their wealth. They are 
rewarded or penalized based on performance. To prevent monopoly, the 
constraint “no mining done in the last 30 days” is enforced.

POSpace Similar to POW but instead of computational power, storage capacity 
(memory) is considered.

POI The proportion of each node in the total volume of network transactions 
is considered.

MOT It favors the node recording good behavior: both good and bad behaviors 
relative to the protocols are stored in the system. Drawback: Vulnerable 
to attacks.

MBH The node that achieves the minimum hash will add its block to the 
blockchain.

PBFT A leader is selected and frequently changed. The leader proposes a block 
to the nodes, which verify and validate or reject it. If two-thirds of the 
nodes validate it, the block is added to the blockchain.
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potentially serving as a model for other countries seeking to improve their 
livestock insurance programs.

The article [13] discusses the application of smart livestock farming (SLF) 
in the cattle industry, leveraging technological advancements such as the 
Internet of Things (IoT) and blockchain to enhance economic viability, 
operational efficiency, and ecological sustainability. It focuses on extensive 
livestock farming, where individual animals are monitored, and it high-
lights how IoT aids farmers in monitoring livestock, planning crops, and 
adopting rational farming methods. Additionally, blockchain technology 
improves traceability of products and customers in the agricultural sup-
ply chain. The article proposes a system integrating IoT and blockchain to 
establish a smart livestock farming (IoT-BC-SLF) system, facilitating trans-
parent exchange among farmers. Key challenges in implementing block-
chain in this context include safeguarding agricultural data and tracking 
production to finished products. By utilizing IoT-BC-SLF technology, farm-
ers can enhance livestock management, achieving better tracking of ani-
mals and behavioral activity compared to traditional methods.

The article [14] emphasizes the increasing significance of livestock prod-
ucts in global agri-food trade and the challenges related to food safety. It 
highlights the need for improvements in food quality, cold chain transit, and 
preservation to ensure the safety of livestock products. Regulatory authori-
ties demand complete food traceability, but this is often compromised in 
traditional supply chains. Traceability-driven food supply chain manage-
ment is seen as a potential solution, particularly with the use of emerging 
technologies like the Internet of Things and blockchain. Blockchain offers 
a transparent and tamper-proof system that enhances credibility, efficiency, 
and safety of food products. However, there are significant challenges to 
overcome in implementing this technology, including training supply chain 
actors and understanding the legal and regulatory framework.

18.3.2  Our contributions

We use the blockchain/AI duo akin to the conscious and subconscious as 
the core for our systems, where the former makes decisions through consen-
sus and the latter learns and disseminates its suggestions on the blockchain.

• Chronic diseases account for a staggering 74% of annual global deaths, 
presenting a critical challenge to the health-care system. Passive and 
reactive approaches to chronic disease management often result in 
severe complications and reduced life expectancy. Our proposed sys-
tem seeks to address these issues by placing the patient at the cen-
ter of care, employing the combined power of the Internet of Things 
(IoT), artificial intelligence (AI), digital twins, and blockchain tech-
nology. This comprehensive scientific article provides an analysis of 
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each technology, discusses related works, offers a comparative analysis 
of our proposal against existing schemes, and explores the potential 
implications and future directions of this groundbreaking system. By 
bridging the gap between these technologies, we aim to not only revo-
lutionize health care but also lay the foundation for a future in which 
patients’ digital twins evolve within the realm of the metaverse.

• Our system aims to detect possible cancer cells, their locations, and 
their phases after medical imaging. For this, it uses blockchain and 
an artificial neural network. In our paper, we will exploit the trusted 
third party played by the blockchain to provide deep learning with a 
secure, reliable, unalterable, and extensible data source by browsing 
all the blocks and by registering new data in the case of a new object 
validated by blockchain participants. These enrich the informational 
heritage made available to deep learning to learn and forge a model 
by adjusting the internal parameters of the neuronal network. Also, 
this deep learning can connect with other blockchains to achieve bet-
ter performance. Finally, the system composed of a blockchain and a 
deep learning user will find its application in health by a blockchain of 
health specialists and diagnosis of diseases by deep learning.

• This paper proposes a novel approach for secure and continuous 
monitoring and management of livestock leveraging the integration 
of blockchain technology and AI. In traditional livestock manage-
ment systems, ensuring secure and real-time tracking of animals 
across diverse locations presents significant challenges. Our solution 
addresses these challenges by employing a blockchain-based frame-
work coupled with AI algorithms. The blockchain technology ensures 
data integrity, transparency, and tamper-resistance, while AI enables 
intelligent decision-making and predictive analytics. By utilizing this 
integrated system, livestock owners and managers can remotely moni-
tor the health, behavior, and location of individual animals in real 
time, regardless of geographical constraints. Moreover, the system 
facilitates seamless data sharing and collaboration among stakeholders 
in the livestock supply chain, enhancing efficiency and trust. Through 
case studies and simulations, we demonstrate the effectiveness and 
practicality of our proposed solution in revolutionizing livestock mon-
itoring and management practices, thereby fostering improved pro-
ductivity, sustainability, and welfare in the livestock industry.

18.4  CONCLUSION

In conclusion, the fusion of blockchain technology and artificial intelli-
gence not only revolutionizes livestock management but also extends its 
transformative impact across various sectors, including health care, edu-
cation, and logistics. By leveraging blockchain for secure and transparent 
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data management and AI for intelligent decision-making, our integrated 
system enhances efficiency, accountability, and trustworthiness in diverse 
domains.

In health care, this integrated approach enables secure sharing of patient 
data across health-care providers while ensuring patient privacy and data 
integrity. AI-driven analytics facilitate predictive diagnostics and personal-
ized treatment plans, leading to improved health-care outcomes.

In education, blockchain ensures the authenticity of academic credentials 
and certifications, while AI-powered adaptive learning platforms personal-
ize educational experiences for students, enhancing learning outcomes and 
engagement.

In logistics, blockchain streamlines supply chain operations by providing 
real-time visibility and traceability of goods from production to delivery. AI 
algorithms optimize route planning, inventory management, and predictive 
maintenance, resulting in cost savings and enhanced customer satisfaction.

By applying blockchain and AI technologies across these sectors, we pave 
the way for a future characterized by enhanced efficiency, transparency, 
and innovation. Continued research and collaboration will further refine 
and expand the applications of these technologies, driving positive societal 
impact and fostering a more connected and resilient world.
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Chapter 19

ML-based detection of 
GPS jamming attacks on 
unmanned aerial vehicles
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19.1  INTRODUCTION

Drone systems have evolved through the past two decades to become an 
integral part of various industries, including agriculture, surveillance, trans-
portation, and entertainment. This trend is particularly notable in the fields 
of education and research and development (R&D). For instance, several 
researchers have been interested in developing low-cost UAV applications, 
especially in agriculture, e.g., autonomous drones for smart and precision 
farming [15], plant protection [20], and seed sowing [19]. However, the 
accessibility of open-source projects renders them more susceptible to tar-
geted attacks if not properly managed and secured.

Furthermore, UAVs rely on sensors to be flown steadily and safely. For 
instance, global positioning system (GPS) sensors are essential to stabilize 
UAVs. Also, they are the main component in autonomous flights as they 
enable waypoint navigation for predefined paths. Additionally, they enable 
a drone to return home (RTH) in case communication is lost with its opera-
tor. For these reasons, GPS sensors are a privileged target for adversaries as 
they can easily be attacked. In fact, attackers take advantage of the unen-
crypted nature of civilian GPS signals and the accessibility of tools, such as 
software defining radio (SDR), utilized to jam these signals. A consequence 
of preventing a drone from receiving the authentic GPS signals might be 
the crash of the vehicle [18]. Hence, detecting GPS jamming is crucial for 
drone safety and such detection has been addressed by the use of several 
techniques and countermeasures.

Recently, machine learning (ML) has been used extensively to solve cyber-
security problematic, such as in works [6] and [4]. Nevertheless, due to the 
lack of specific datasets in the context of drone systems, little research has 
been done on detection of GPS jamming targeting UAVs. In this work, we 
address this gap by providing an ML solution for detecting GPS jamming 
attacks and indicating the direction and distance of threats. Furthermore, 
we propose and discuss five ML models, evaluating their performances as 
well as their training and prediction times.

DOI: 10.1201/9781003587552-19
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The remainder of this chapter is structured as follows. Related works 
are presented in Section 19.2. Details about the dataset used and the pre-
processing are given in Section 19.3. Section 19.4 presents ML models and 
evaluation metrics, followed by a discussion of results. Finally, conclusions 
are outlined in Section 19.5.

19.2  RELATED WORKS

The authors of [7] proposed a detection method based on measuring the 
power of the GPS signal received. This method detects the occurrence of 
jamming and identifies its type depending on which interval the signal level 
belongs to. Various jamming techniques were considered, including Spot 
Noise, Barrage Noise, Pulse Noise, and Sweep Noise. All data used for 
experiments was simulated using Simulink in MATLAB [16]. In [1], the 
authors presented a method that relies on automatic dependent surveillance 
broadcast (ADS-B) information [12], received by ground sensors, to con-
firm GPS jamming attacks against an aircraft. To detect anomalies, the 
method analyzes the distribution of received messages from ADS-B devices, 
which regularly broadcast aircraft position and other information. The 
authors of [2] proposed a multi-output multi-class ML solution to GPS jam-
ming attacks detection and range localization. The authors built a dataset 
of 17.960 samples by conducting Barrage, Single tone, Successive pulse, 
and Protocol aware jamming attacks [10] against an open-source UAV. 
They trained RF, KNN, MLP, LR, DT, NB, and support vector machine 
(SVM) on the dataset. MLP outperformed other ML algorithms with an F1 
score of 98,9%, while DT yielded the lowest prediction time of 1.26 ms. 
The analysis of related works shows that some works found in the litera-
ture made use of synthetic data; others relies on other additional hardware 
devices, i.e., ADS-B sensors. Unlike previous works, we provide a ML solu-
tion trained on a real-world dataset that detects promptly, accurately, and 
efficiently GPS jamming attacks on UAVs without additional hardware.

19.3  DATASET AND PRE-PROCESSING

This section presents the dataset used in our study, describing the testbed 
and highlighting the configuration sets elaborated for its creation. Moreover, 
we detail the pre-processing approach adopted, describing the full process.

19.3.1  Dataset description

In this chapter, we made use of the dataset elaborated in [2]. The dataset 
was created by conducting various GPS jamming attacks against a Pixhawk 
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[14]-based UAV from COEX, using a B-210 SDR. The testbed involved dif-
ferent sets of experiments. In fact, the distance separating the jammer from 
the UAV was set, respectively, to 3m, 10m, 17m, and 24m. Besides, for 
each configuration, the direction of jamming was set, respectively, to south, 
north, west, and east. The experiments enabled the collection of 9,904 
authentic samples and 8,056 jamming attack samples, extracted from the 
UAV flight controller GPS receiver logs. The dataset includes three labels 
for each samples, namely, type of jamming, direction, and distance from 
the jammer.

19.3.2  Pre-processing

We searched for “Not a Number” (NaN) values and we found that the fea-
ture variable “headings” contains NaN values; consequently, we dropped 
it. In addition, we sanitized the dataset from noise data, i.e., the meaning-
less data that could have been injected into the dataset unintentionally dur-
ing experiments.

In fact, we found 132 duplicate samples that had been assigned to two 
different classes and we eliminated them. Additionally, we kept just GPS-
related features and dropped a timestamp. The remaining 14 feature vari-
ables underwent a feature reduction (FR) process. In this study, we used 
Pearson Correlation (PC) analysis [17] and mutual information (MI) [11] to 
choose the most relevant features. First, we conducted a PC analysis on the 
dataset to find out correlated feature variables and quantify the strength of 
correlation. We identified four pairs of highly correlated features, namely, 
(eph,epv), (hdop,vdop), (s_variance_m_s,eph), and (s_variance_m_s,epv). 
To decide which feature to eliminate, we ranked features according to their 
Mutual Information (MI) with the target variable. The results of MI rank-
ing showed that “epv” and “vdop” are more relevant than “hdop,” “eph,” 
and “s_variance_m_s”; hence, we dropped these three latter feature vari-
ables. The remaining features are given in Table 19.1.

Since we opted for multi-class classification to solve a detection and local-
ization problem simultaneously, we instituted a change in the dataset. We 
transformed the three output labels into one target variable by mapping 
the distance, the direction, and the jamming conditions. The new dataset 
consists of 17 classes, “class 0” for authentic samples, and the rest of classes 
representing sets of GPS jamming attacks with different cases of direction 
and distance of jamming, as can be seen in Figure 19.1. For example, a 
prediction of “class 3” indicates that a GPS jamming attack occurred, the 
jammer is located forward of the progression of the drone and situated in 
17m. As a final step in pre-processing, we split the dataset into 70% subset 
for training and 30% subset for testing.
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19.4  TRAINING, EVALUATION, AND DISCUSSION

In this section, we present ML algorithms and performances metrics that 
have been adopted in our work. Then, we discuss the results.

19.4.1  Training models and Evaluation

In this study, we made use of supervised ML algorithms to classify data into 
the 17 aforementioned classes. The algorithms adopted are: XGBoost [4], 

Table 19.1  Description of the most relevant 11 feature variables

Feature variable Description

cog_rad Course over ground (radians)

c_variance_rad GPS course accuracy estimate (radians)

vdop Vertical dilution of precision

epv GPS vertical position accuracy (meters)

noise_per_ms GPS noise per millisecond

jamming_indicator Indication of jamming occurrence

satellites_used Number of satellites used

vel_d_m_s GPS Down velocity (mps)

vel_m_s GPS ground speed (mps)

vel_e_m_s GPS East velocity (mps)

vel_n_m_s GPS North velocity (mps)

Figure 19.1  GPS jamming detection and threat indication approach
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DT [5], KNN [8], LR [3], and NB [9]. To evaluate the performance of ML 
models, a testing subset was used. Depending on the prediction made by 
each classifier, confusion matrices and performance metrics [13] were com-
puted. The metrics adopted for our study are accuracy, precision, recall, 
and F1 score. The detailed results obtained for ML models are shown in 
Table 19.2 and Figure 14.2.

19.4.2  Discussion

Figure 19.2a shows that XGBoost and DT yielded accuracies above 99%, 
followed by KNN with 97.14%. LR and NB registered accuracies below 
56%. Figure 19.2b shows that XGBoost has an F1 score of 99.95%, fol-
lowed by DT with 98.80% and KNN with 95.35%. Meanwhile, LR and 
NB registered poor F1 scores, below 25%, as the two models failed to 
detect any jamming attacks. Training time for XGBoost, as can be seen in 
Figure 19.2c, was relatively slower, i.e., 34.355s, compared to other ML 
models. DT and KNN registered faster training time with 199.5 ms and 
150.54 ms, respectively. Among the best performing models, DT predicted 
the samples with only 15ms. Meanwhile, XGBoost and KNN registered 
96.62 ms and 742.48 ms, respectively, in prediction time (Figure 19.2d). 
Considering all results, given in Table 19.2, it is noteworthy to point out 
that although KNN achieved quite satisfactory performance, it predicted 
samples slower. Moreover, DT could be used as it detects and localizes GPS 
jamming attacks faster, while maintaining excellent performances.

19.5  CONCLUSION

This work deals with detection of GPS jamming attacks targeting UAVs. 
The models proposed enable a drone not only to detect the attack but also 
to indicate the direction from which the jamming occurs and the distance 
separating the jammer from the vehicle. To train the ML models, we made 

Table 19.2  Comparative results of ML models

  

Precision Recall F1-score Accuracy  Training Prediction

(%) (%) (%) (%)  

DT 98.79 98.82 98.8 99.29 199.5 15.75

XGBoost 99.97 99.93 99.95 99.96 34354.99 96.62

KNN 95.47 95.28 95.35 97.14 150.54 742.48

LR 34.35 22.97 24.73 55.6 5439.86 8.97

NB 30.82 21.89 22.99 54.94 28.62 19.63
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use of a real-world dataset. We sanitized, reduced the features of the dataset 
using mutual information and Pearson correlation coefficients, and trans-
formed the labels to fit multi-class classification. It turns out that XGBoost 
is the best performing model with 99.95 % in F1 score, 99.96% in accuracy, 
99.97% in precision, and 99.93% in recall. Also, DT could be implemented 
considering its performances exceeding 98.8% and its lowest training and 
prediction time, 199.50 ms and 15.75 ms, respectively.
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Chapter 20

A comparative analysis 
of random forest and 
isolation forest intrusion 
detection systems

Sara Amaouche, Azidine Guezzaz, Said 
Benkirane, and Mourade Azrour

20.1  INTRODUCTION

Vehicular ad hoc networks (VANETs) are an essential component of mod-
ern transportation systems, facilitating continuous communication between 
vehicles and infrastructure [1]. These networks play an essential role in the 
implementation of various applications such as traffic management, col-
lision avoidance and infotainment and for improving road safety, traffic 
efficiency, and passenger comfort [1]. However, despite their many advan-
tages, VANETs face significant safety issues due to their dynamic topology 
and decentralized nature [2]. The dynamic and mobile nature of VANET 
networks introduces vulnerabilities that can be exploited by malicious enti-
ties [2]. Threats such as cyberattacks, data tampering, and unauthorized 
access pose serious risks to the integrity and reliability of VANET networks 
[3]. As a result, VANET network security has become essential to protect 
both the network and its users [3]. Intrusion detection systems (IDSs) have 
appeared as a proactive defense mechanism for monitoring network traffic 
and identifying suspicious activity or anomalies in real time [4]. Relying 
on machine-learning algorithms, IDSs can learn from historical data to 
detect and attenuate potential threats, thus improving the overall secu-
rity level of VANET networks [5]. In addition, advances in communica-
tions technologies, such as 5G networks, offer promising opportunities to 
enhance the capabilities and performance of VANET networks [6]. With 
high bandwidth, low latency, and support for massive device connectiv-
ity, 5G technology enables continuous, reliable communication between 
vehicles, infrastructure, and other entities within the VANET ecosystem 
[6]. Leveraging 5G’s capabilities can lead to higher levels of efficiency, reli-
ability, and safety, opening the way for intelligent transportation systems 
(ITS) and autonomous driving applications [6, 7].

This study addresses VANET security issues by proposing a random for-
est and isolation forest (RF-IF) for anomaly detection, combined with fea-
ture selection techniques and efficient data pre-processing [8]. Evaluation 
measures such as accuracy, precision, recall, and F1-score are used to assess 
the effectiveness of the framework [8]. Experiments on real VANET datasets 
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validate the robustness and applicability of the model in different environ-
ments [8]. The rest of this chapter is structured as follows: Section 2 provides 
background information, and Section 3 explores related work concerning 
VANETs and intrusion detection approaches. In Section 4, we describe the 
main steps in the design of our proposed model. Experimental evaluation 
and results are discussed in Section 5. Finally, the chapter concludes with a 
summary and describes potential directions for future research.

20.2  BACKGROUND AND RELATED WORKS

20.2.1  Background

VANETs represent a major step toward modern transportation systems, 
enabling dynamic vehicle-to-vehicle communication without the need for a 
fixed infrastructure [16]. These networks are designed with the primary aim 
of improving traffic management and safety, by facilitating the exchange 
of critical information and warnings between vehicles, while providing 
advanced services to road users [9]. VANETs are characterized by their 
shared wireless support and dynamic network topology, enabling vehicles 
to join and leave the network smoothly [10]. However, the very features 
that make VANETs effective also pose significant security challenges. The 
reliability of individual nodes becomes critical, as a single failed or compro-
mised node can compromise the functionality of the entire network [10]. 
Traditional security mechanisms such as encryption, while essential, may 
prove inadequate in the context of autonomous vehicles, underscoring the 
need for more robust solutions such as IDS to detect and mitigate attacks 
in VANET networks [7, 11, 42]. In the domain of VANET networks, IDSs 
play an essential role in monitoring and analyzing network traffic to iden-
tify unusual patterns or potential security vulnerabilities, enabling known 
and emerging threats to be addressed proactively. This proactive attitude 
is essential to protect the critical components of vehicle communication 
systems and guarantee the integrity of sensor data [7]. By improving the 
security and reliability of VANET networks, IDSs make a significant con-
tribution to the development of safer, more efficient transport systems [11]. 
In addition, the dynamic nature of VANET networks requires an advanced 
understanding of communication technologies such as dedicated short-
range communications (DSRC) [37], wireless access in vehicular environ-
ments (WAVE), and IEEE 802.11p. These technologies enable vehicles to 
communicate directly with each other (V2V) or with roadside units (V2I), 
providing vital functions such as traffic monitoring, accident alerts, and 
weather notifications [13]. Despite the promising features of VANETs, 
challenges and vulnerabilities persist, particularly in terms of security [14]. 
For example, emergency signals sent by vehicles could be compromised by 
malicious actors, with potentially catastrophic consequences. It is therefore 
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imperative to implement robust and reliable security protocols to guarantee 
the integrity and security of VANET networks [15].

20.2.2  Related works

Various machine learning (ML) and deep learning (DL) algorithms have 
been employed in IDSs to identify intrusions [26]–[45]. For example, Gad 
et al. [18] used the ToN-IoT dataset to evaluate several machine learning 
methods for binary and multiclass classification tasks. They used the chi-
square (Chi2) technique for feature selection and synthetic minority overs-
ampling (SMOTE) for class balancing, with XGBoost offering superior 
performance. Manderna et al. [19] proposed an AI-based NIDS framework 
that integrates two-way self-attentive long-term memory (SA-BiLSTM) and 
a cascaded convolutional neural network (CCNN) for feature learning. 
Their model, improved using the gradient-based multivariant optimization 
(MV-GBO) algorithm, achieved high accuracy in datasets such as KDD-
CUP99, ToN-IoT, and VeReMi. Ghaleb et al. [20] presented a collabora-
tive adaptive IDS (MA-CIDS) using distributed ensemble learning with 
random forest, demonstrating improvements in effectiveness and efficiency 
over existing models on the NSL-KDD dataset. ALMahadin [21] developed 
SEMIGRU, a semi-supervised anomaly detection technique based on the 
GRU DL model, which outperforms previous methods in VANET anomaly 
detection. Lihua et al, [22] proposed an energy-sensitive IDS (EIDS) for 
V2V communication in the Internet of Vehicles (IoV), achieving significant 
improvements in accuracy and runtime on the NSLKDD dataset. Zeeshan 
et al. [23] presented a protocol-based deep intrusion detection (PB-DID) 
framework, achieving high classification accuracy on IoT traffic datasets. 
Finally, Karthiga et al. [24] introduced a hybrid IDS integrating known 
IDS (KIDS) and unknown IDS (UIDS) modules, achieving superior perfor-
mance on the i-VANET dataset and the CIC-IDS 2017 real-time dataset 
compared with existing methods (Table 20.1).

20.3  PROPOSED WORK

This study focused on improving VANET network security through intru-
sion detection using a multifaceted approach. Data pre-processing consists 
of removing null values to ensure the integrity of the dataset. Feature selec-
tion, using the RF algorithm, identified features crucial to intrusion detec-
tion. For classification, machine learning algorithms, mainly RF for known 
attacks and IF for anomalies, were used. Experiments carried out on the 
Veremi, NSLKDD, and TON-IOT datasets enabled performance measures 
such as accuracy, precision, recall, and F1-score to be evaluated, guarantee-
ing effective real-time intrusion detection capabilities (see Figure 20.1).
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20.4  EVALUATION AND RESULTS DISCUSSION

20.4.1  Environment description

The Veremi dataset [27] serves as a fundamental building for blockin 
machine learning and cybersecurity research, offering a diverse array of 
features and instances related to cyber threats. Similarly, the NSL-KDD 
dataset [28], an enhanced version of the KDD’99 dataset, addresses identi-
fied limitations by removing redundant data and balancing records based 
on classification difficulty levels. Additionally, the ToN-IoT dataset [29] is 
tailored for exploring data from the Internet of Things (IoT) and Industrial 
Internet of Things (IIoT) domains, featuring telemetry, Windows, Linux, 
and network traffic data in CSV format. In the experimental phase of our 
research, we conducted tests on a machine powered by an Intel(R) Core(TM) 
i7 CPU @ 1.90GHz 2.11 GHz with 16GB of RAM, under a Windows 10 
x64-bit system. The development and refinement of our model, alongside 
the feature engineering process, were executed using Python version 3.10.6.

• True positives (TP): Well identified attacks.
• The false positives (FP): Badly classified attacks.
• True negatives (TN): Correctly identified normal instances.
• False negatives (FN): Misclassified normal instances.

The following equations are used to calculate some metrics

 Accuracy: 
TP TN

TP TN FP FN

+
+ + +  (1)

 Precision: 
TP

TP FP+  (2)

 Recall (True Positive Rate TPR): 
TP

TP FN+  (3)

 F1-score: 2 × Precision Recall

Precision Recall

�

�

 (4)

Figure 20.1  Scheme of proposed framework
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20.4.2  Results and discussion

Analysis of the normalized confusion matrices for the Veremi, NSL-KDD, 
and TON-IOT datasets shown in Figures 20.2, 20.3, and 20.4 highlights 
the model’s classification achievements. The high rates of true positives in 
the Veremi and NSL-KDD datasets underline the model’s ability to accu-
rately distinguish attack nodes. The TON-IOT matrix revealed near-perfect 
classification for most attack types, indicating the model’s enhanced sensi-
tivity in a complex environment. Integrating RF-IF into intrusion detection 
resulted in a remarkable improvement in accuracy in all datasets compared 
to using RF alone (Figure 20.5). Particularly in the Veremi and NSL-KDD 
datasets, the combined RF-IF method achieved near-perfect results in terms 
of accuracy, precision, recall, and F1-score, outperforming the RF approach 
alone. In the TON-IOT dataset, both methods achieved perfect scores for 
all measures, underlining the robustness of the model to address security 
challenges. This powerful synergy between RF and IF highlights their pow-
erful effect, particularly in the complex field of network intrusion detec-
tion, where even incremental improvements in accuracy and reliability are 
of significant importance. The accuracy measurements presented in Figures 
20.6, 20.7, and 20.8 on the Veremi, NSL-KDD, and TON-IOT datasets 
confirmed the model’s ability to predict true positives, highlighting its 
extreme accuracy, particularly in classes such as “ConspOffset” and “back-
door.” Consistent performance across the various datasets underlines the 
IDS’s reliability in reporting threats in a variety of network environments.

Figure 20.2  Confusion matrix (Veremi dataset)
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Figure 20.4  Normalized confusion matrix (TON-IOT dataset)

Figure 20.3  Confusion matrix (NSL-KDD dataset)
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Figure 20.5  Scores by metric and dataset

Figure 20.6  Precision by class (Veremi dataset)
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20.5  CONCLUSION

Our research aims to enhance VANET network security against emerging 
cyber threats. Through a rigorous comparative analysis, we evaluated RF 
and IF intrusion detection systems using datasets like Veremi, NSL-KDD, 
and ToN-IoT. Our results demonstrate the robustness of both approaches, 
with RF excelling in identifying known attack patterns and IF effectively 
detecting anomalies. Furthermore, accurate data pre-processing and fea-
ture selection were highlighted as crucial for improving IDS performance. 
Overall, our study provides valuable insights to fortify vehicular communi-
cation systems against cybersecurity risks.

Figure 20.8  Precision by class (TON-IOT dataset)

Figure 20.7  Precision by class (NSL-KDD dataset)
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Chapter 21

A collaborative anomaly 
detection model using 
QRNN and blockchain

Chaimae Hazman, Azidine Guezzaz, Said 
Benkirane, and Mourade Azrour

21.1  INTRODUCTION

Because of the complexity and vulnerability of IT infrastructures on open, 
dispersed networks, intrusion detection systems (IDSs) have seen substan-
tial technical progress. Since the growth of unauthorized access and cyber-
attacks, centralized and massive IDSs are no longer appropriate for today’s 
network architecture. A collaborative IDS system in which different parts 
scattered over the network cooperate to analyze data and generate global 
and appropriate alarms is an improved method [1–9]. Establishing com-
ponents that interact to optimize the operation of an IDS in an open, dis-
persed, and diverse environment is a continuing problem for a variety of 
factors. To begin, the network’s infrastructure is complicated and exten-
sive, and the variety of devices that must collaborate to enable accurate 
detection of intrusions is large. Furthermore, multiple parts may have dis-
tinct designs, arrangements, and working systems, making it challenging 
to combine them all into a single system. Finally, it is critical to protect the 
privacy and confidentiality of transmitted data since the system’s depend-
ability and accuracy are dependent on the caliber of the information ana-
lyzed. Any data modification or tampering can result in biased findings 
and disturb the overall system’s operation [2, 11–17]. Blockchain technol-
ogy is an appropriate approach for addressing these challenges. Blockchain 
technology provides a decentralized, tamper-resistant, and searchable plat-
form for effectively conserving and disseminating critical information. As 
a technology based on distributed ledgers, it enables the establishment of a 
distributed reliable infrastructure in which every device has a link to similar 
data and can validate its accuracy. The implementation of blockchain-based 
systems in IDS enables safe data sharing and builds aggregate confidence 
among all of the nodes. Furthermore, it permits the construction of a per-
manent representation of every transaction and information exchange, 
assuring the confidentiality of the shared data across the entire network 
[19–27]. The efficiency of an IDS in identifying hostile activity is primarily 
determined by its analytical section [28–30].
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Machine learning–based analytical approaches make employing meth-
ods that may develop from data better over time [3–30]. The aforemen-
tioned methods are useful for analyzing and extracting insights from huge 
and complicated datasets. There are several analytical methodologies, each 
with a distinct set of advantages and disadvantages. To transcend the limits 
of each individual analytical approach and capitalize on their benefits, they 
can be utilized in tandem. Autoencoders and QRNNs, for instance, can be 
employed in tandem: By generating a reduced form of the data, an autoen-
coder may be applied to pretrain a QRNN; this can be used as input to the 
QRNN for classification or other tasks. This method can assist in increas-
ing the QRNN’s efficiency, particularly if labelled data is few. Furthermore, 
autoencoders may be utilized to supplement data for QRNNs. An auto-
encoder may learn to reconstruct the changed data through performing 
random modifications to the input data, such as scaling, rotation, or crop-
ping, essentially producing new instances that may be utilized to retrain the 
QRNN. This technique incorporates both analytical techniques in order 
to offer greater accuracy detection and lower the risk of false positives and 
erroneous negative results. It also offers and executes a set of collaborative 
IDSs based on blockchain technology to assure safe data sharing and com-
munal trust among all nodes. By integrating all of these methodologies, the 
resultant IDS can detect and prevent disturbances on accessible, large-scale, 
and indefinitely dispersed networks.

21.2  RELATED WORKS

Researchers have advocated integrating blockchain technology in collabor-
ative intrusion detection systems to improve confidence and security admin-
istration across different intrusion detection systems in current research. 
Sajjad et al. [7] introduced a collaborative detection and mitigation system 
for the industrial IoT area. The approach is intended to detect abnormal 
item behavior through contrasting it with predefined regulations. The tech-
nology was evaluated and shown to effectively identify all offensive motions 
performed by hackers, with an excellent rate of identification of 97%. 
Despite the scientists proving the advantages of utilizing an Ethereum-based 
collaborative reduction system, their study also highlighted significant 
drawbacks. The way the system was implemented on Ethereum, in particu-
lar, was determined to be quicker to scale than on Hyperledger. But it was 
also noticed that the evidence of work difficulty of Ethereum is more than 
that of Hyperledger, which may have an influence on the whole system’s 
efficiency and restrict its efficacy in particular instances. Makhdoom et al. 
[8] proposed a collaborative intrusion detection system that makes use of 
blockchain technology to facilitate interaction and exchange of data among 
different intrusion detection systems. The suggested strategy appears to be 
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a potential option for improving identification of impending attack events. 
The research managed to identify problems related with maintaining confi-
dence between network peers. The existence of an inside attacker, according 
to the researchers, could introduce erroneous malware signatures into the 
network, resulting in efficiency deterioration. This problem emphasizes the 
need for extra safeguards to protect the system’s identity and limit the effect 
of prospective assaults. The research found that integrating blockchain with 
IDS may contribute to enhanced trust administration and identification of 
rogue nodes, thus boosting the system’s overall resilience. In addition, the 
findings revealed that the suggested approach could successfully combine 
alerts and recognize erroneous data entries, resulting in a decrease in rate of 
errors. While the work proposes a potential way to improve IDS resilience, 
it is crucial to emphasize that there may be additional constraints that must 
be resolved. In particular, the efficiency effect of incorporating blockchain 
into IDS systems, as well as the possibility for more variables, might cause 
issues in some cases. Benaddi et al. [9] emphasize the necessity of providing 
a high standard of protection for IoT gadgets, especially when safely shar-
ing private information between the nodes of a network. Fortunately, the 
massive volume of data created every day is a problem that needs adequate 
oversight to ensure security and confidentiality. To overcome these issues, 
the researchers recommend combining IDSs with blockchain as the pri-
mary record for safe storage of information. By exploiting the inviolability 
and decentralized characteristics of blockchain technology as a whole, this 
solution can provide more safety and secrecy for IoT devices. The utiliza-
tion of IDS in conjunction with blockchain offers potential for increasing 
the safety of IoT devices; however, further study is required to assess its 
efficacy and applicability in practical applications. Alkadi et al. [2] sug-
gested an integrated intrusion detection approach that enables data stored 
in the cloud interchange while lowering the cost of overhead. The technol-
ogy can be employed as well as a decision-making tool for cloud consum-
ers and service providers to help in encrypted information movement. The 
attack detection approach processes network sequences of data employ-
ing a bidirectional long short-term memory (BiLSTM) learning algorithm, 
and the method’s effectiveness was assessed using the UNSW-NB15 and 
BoT-IoT datasets. But the suggested solution’s scalability to massive data 
sets remained an unanswered question. Liang et al. [2] developed a unique 
intrusion detection system that combines multi-agents, blockchain, and 
deep learning to improve protection. The system that is suggested makes 
use of the NSL-KDD database, and all interaction agent operations are 
tracked on the blockchain to guarantee security against any attacks. The 
system’s efficacy was evaluated in a variety of circumstances, encompass-
ing networks of differing complexities and different sorts of assaults, yield-
ing excellent results. However, the suggested system’s scalability has to be 
examined, since it may struggle to handle vast volumes of data in real-world 
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contexts. Kolokotronis et al. [10] recommended employing new methods to 
reduce IDS threats. A trusted chain – a blockchain where private informa-
tion transferred around collaborative IDS (CIDS) nodes is recorded to avoid 
fabrication by hostile nodes – is included in the system that has been sug-
gested. Furthermore, each IDS exchanges trust-related information among 
IDS nodes in order to increase system security. Also suggested was a pro-
tocol which combines proof of work (PoW) with proof of stake (PoS). To 
produce the following block, this method prioritizes reliable IDS sites with 
greater processing capacity and stakes. Although the suggested technique 
overcomes certain safety risks, it could run into sustainability challenges 
as the total amount of nodes increase. Alexopoulos et al. [11] developed 
a blockchain-based technique centered on CIDS for better harmful detec-
tion. Each alarm signal is viewed as a transaction generated by an IDS 
node, and other participating nodes employ consensus procedures to verify 
the alert. While the method provides improved security, the reliability of 
the system remains an issue owing to the possibility of inaccurate results 
and false negatives. Although the studies yielded encouraging findings, they 
also revealed several limitations. These limitations involve challenges with 
scaling when handling massive volumes of data, possible consequences for 
system efficiency, and the issue of handling trust between system users. The 
purpose of our proposed approach is to protect smart cities by protecting 
nodes in the event of an unlawful attack via the implementation of IDS in 
smart cities. IDS is an effective security technology that may be enhanced 
with ML and DL algorithms; nevertheless, because smart cities are dis-
persed, one IDS is adequate to detect many attacks. In fact, we propose 
interactive distributed smart cities–based IDS that combines DL approaches 
with the successful Adaboost to create an intrusion detection system that 
recognizes attacks at every node, as well as Blockchain technology to trans-
fer and safeguard attacks identified by points in complete security as well 
as to ensure node confidence and dependability. In addition, leveraging the 
GPU to benefit from the SAE and QRNN model enables quicker capture 
recognition and processing.

21.3  PROPOSED APPROACH

A collaborative intrusion detection system (CIDS) is a sophisticated method 
that improves safety by tracking and analyzing information obtained from 
different networks at the same time. The requirement for CIDS stems from 
the reality that one IDS node could be unable to identify complicated and 
sophisticated assaults due to a lack of understanding of prior attacks and 
other harmful occurrences. CIDS enables all IDS components to inter-
act with one another to exchange data regarding emergent network dif-
ficulties, immunizing and prevent assaults from intensifying. Fortunately, 
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organizations are reticent to provide their information owing to concerns 
regarding privacy. Nonetheless, merging blockchain with CIDS guarantees 
a reasonable degree of confidence via consensus mechanisms. Blockchain 
protects data by ensuring its integrity has not been altered while in transit.

21.3.1  Intrusion detection subsystem

This component is in charge of identifying and analyzing suspected net-
work breaches. It intercepts communication over the network and grabs 
pertinent data for subsequent examination. Machine learning techniques 
are used to discover and categorize possible security risks.

21.3.2  Blockchain-based communication subsystem

The communication framework makes use of the technology known as 
blockchain to enable safe and transparent exchange of data across system 
parts. By utilizing a decentralized and distributed ledger, blockchain secures 
the confidentiality and permanence of data. It allows IDS stations to com-
municate with regard to developing problems with the network, cooperate 
in real time, and prevent assaults from developing. The communication for 
blockchain feature communicates with the Hyperledger Fabric network, 
which is made up of many IDS nodes constituted by IDS node (peer) enti-
ties. The Hyperledger Fabric’s chain code (smart contract) provides the rea-
soning for IDS node connectivity as well as data exchange. The IDS node 
functions as another node in the Hyperledger Fabric network, communicat-
ing with each other and gaining access to the public ledger and so enabling 
safe and transparent communication.

• Intrusion detection subsystem

The first stage in implementation is pre-processing, which entails changing 
the raw data retrieved from the BoT-IoT dataset. It has been developed and 
tagged for prospective multiclass use. The label characteristics denoted an 
assault flow, a category of attacks, and a subclass. In reality, BoT-IoT has 
99.99% more assaults than benign ones (0.01%), and it contains 46 proper-
ties, including the target variable.

Missing values are common in datasets, which can be ascribed to record-
ing mistakes or feature extraction difficulties. To remedy this, we opted to 
remove rows with NaN, Null, or Inf values. Considering the magnitude 
of the dataset, this has little effect on the outcomes. We utilized a stacked 
autoencoder and a QRNN to learn from this pre-processed dataset after 
conducting the pre-processing phase on the BoT-IoT dataset and partition-
ing it into testing, training, and validation sets.
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We used a stacked autoencoder, which is constructed of three autoencod-
ers; every one of them is formed of an encoder network (E) and a decoder 
network (D). The encoder reduces the source data to produce a lower-
dimensional space-time participation, while the decoder D attempts to re-
create the initial data provided in this reduced form. The autoencoder was 
taught from start to finish minimizing reconstruction error, allowing it to 
learn useful and concise patterns.

21.3.3  Stacked autoencoder structures

• SAE training

On the training set (X_train), we trained the SAE to learn the best implicit 
forms. The training method entails minimizing the reconstructed loss, mea-
suring the difference between the first input and its reconstructed form. We 
optimized the encoder and decoder to collect some of the essential aspects 
of the input information by redistributing the error via the SAE stages and 
adjusting the variables that are learned.

After learning the SAE, we used the encoder E to get encoded representa-
tions of the information that had been processed from the training, testing 
sets. Z_train denotes the encoded representations of the training set, W_val 
denotes the one used for validation set, and W_test denotes the one used 
for testing set.

• SAE output

After training the autoencoder, we used the encoder to get encoded repre-
sentations of the information that had been processed from the training, 
testing sets. Z_train denotes the encoded representations of the training 
set, W_val denotes the one used for validation set, and W_test denotes the 
one used for testing set.

21.3.4  QRNN structures

For the classification job, we created a quasi-recurrent neural networks 
(QRNN) architecture using encoded representations as inputting. The 
QRNN is made up of several layers of linked neurons that allow it to learn 
intricate structures and generate predictions.

• QRNN training

We trained the QRNN using the encoded representations W_train and 
the associated labels y_train. Passing the encoded representations into the 
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QRNN layers and optimizing the QRNN variables to minimize an appro-
priate loss function are part of the learning phase. Gradient descent or its 
derivatives are commonly utilized in this optimization technique, with 
backpropagation employed for determining the gradients.

• Training and testing

After training the QRNN, we assessed its generalization capacity by evalu-
ating its efficacy on the validation dataset (W_val). This assessment allows 
us to fine-tune hyper parameters like the variety of the layers, neurons, 
and activation processes in order to enhance the algorithm’s efficiency. 
This phase was repeated on multiple occasions to refine the QRNN design. 
Lastly, we evaluated the QRNN on the testing set (W_test) in order to get an 
impartial evaluation of its reliability and efficacy. This assessment assisted 
us in determining how effectively the algorithm generalizes to previously 
unknown information and gives perspectives on its performance in reality.

We are interested in creating a framework that can successfully catego-
rize and identify breaches in network data by using the SAE to acquire 
condensed representation and then training the QRNN using these rep-
resentations. The SAE aids in collecting significant characteristics and 
decreasing distortion in the information, while the QRNN makes accurate 
forecasts by using these models.

• Blockchain-based communication subsystem

We put Hyperledger Fabric on every single communication node, includ-
ing IDS and surveillance nodes. This step usually entails installing the 
binary systems as well as requirements. The network was defined by 
producing a file with configuration information that describes the vari-
ety of endpoints and their duties. Because the system includes triple IDS 
nodes and two surveilling nodes, the IDS network represents a separate 
protection part, while the surveillance nodes gather and analyze attack 
data: ids _nodes .app end(node_id), surveillance _nodes .app end(node_id). 
Communication methods and data formats for transferring intrusion 
detection information are defined by intelligent contracts. For instance, 
the intelligent contract may define functions for declaring an identified 
attack or applying for more information from different nodes: context.
setContract(attackContract).

We built channels for communication inside the Hyperledger Fabric 
architecture to allow for targeted data exchange between IDS and surveil-
lance nodes. We established a channel called “AnomalyDetectionChannel” 
and added three IDS nodes and two monitoring nodes to it: createChan-
nel (AttackDetectionChannel, [ids1, ids2, ids3]). ([surveilling 1, surveil-
lance 2]) ). Then we built the reasoning inside the intelligent contracts to 

http://www.ids_nodes.append
http://www.surveillance_nodes.append
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allow for sharing of information and validation. By activating a function 
in the intelligent contract and giving essential parameters that include 
the source IP, destination IP, and attack type, the IDS node can notify a 
discovered invasion. The information may then be validated per preset 
parameters by the intelligent contract, confirming the correctness and 
security of the claimed attack: this.validateAttackData(sourceIP, desti-
nationIP, AttackType) is a function that validates attack information. 
Employing the provided communication channels, we carried out inter-
actions across the IDS endpoints and the surveillance nodes. By activat-
ing a feature in the intelligent contract and supplying an attack ID, the 
node responsible for monitoring can obtain further information about a 
reported intrusion. The IDS node that discovered an attack might reply 
to the query by giving additional details via the intelligent contract: 
reportAttack(context, sourceIP, destinationIP, AttackType) attackCon-
tract. By utilizing a ledger that is distributed, Hyperledger Fabric pro-
vides data permanence and consensus. Every legitimate action involving 
peers is saved in the ledger, resulting in an irreversible and visible back-
ground. Compromise between the nodes involved can be achieved by the 
implementation of an agreed-upon algorithm, practical byzantine fault 
tolerance (PBFT), which makes certain all of the nodes accept the legiti-
macy of activities.

Nodes participating in intrusion detection may securely share informa-
tion, maintain integrity of data, and provide an ethical foundation for 
cooperation and analysis by utilizing blockchain communication based on 
Hyperledger Fabric. The decentralized and transparent nature of block-
chain technologies improves the overall efficacy and dependability of detec-
tion and prevention devices (Figure 21.1).

Figure 21.1 Blockchain structure
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21.4  CONCLUSION

We proposed in this study an IoT system for protecting the smart cities 
nodes when receiving a malicious attack event by integrating an efficient 
IDS enhanced by the learning set QNN for each node, and the collabora-
tion between different nodes is done via a blockchain to exchange attacks 
detected by each fog node securely. Our study and experiment results con-
firm the model’s effectiveness in accurately detecting attacks and anomalies 
across various transaction types in binary classification. The experimental 
dataset utilized in this study comprises samples from the EdgeIIoT.
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Chapter 22

Iterated greedy with tabu 
search solving flow shop 
scheduling problem

Khadija Mesmar, Maria Lebbar, 
Said Aqil, and Karam Allali

22.1  INTRODUCTION

In recent decades, production systems have faced intensified competition in 
meeting client demands within optimal timeframes, as customer satisfac-
tion greatly relies on timely deliveries. One extensively studied scheduling 
problem is the flow shop problem (FSP), which has garnered significant 
attention in the literature [1, 2]. In the FSP, a set J = {J1, J2, ..., Jn} consist-
ing of n independent jobs needs to be processed on a set M = {M1, M2, ..., 
Mm} of m machines. Each job k in J requires a fixed, non-negative pro-
cessing time Tkh on each machine h in M. Additionally, all tasks (n) must 
follow the same sequence on machines (m), meaning that the jobs in the 
shop must adhere to a consistent machine order, starting from machine 1 
and ending on machine m. The objective is to determine the optimal order 
for processing the jobs in the shop, aiming to optimize a specific criterion. 
The most commonly studied criterion in the literature is the minimization 
of the total completion time, also known as the makespan (Cmax), of the 
production sequence. This simplified problem is referred to as the permu-
tation flow shop problem (PFSP) with the makespan criterion denoted as 
Fm|prmu|Cmax [3]. It is important to note that the standard notation used 
in scheduling problems consists of three components: α|β|γ, as proposed in 
[4]. The first component α indicates the problem type, the second compo-
nent β represents the constraints, and the third component γ denotes the 
problem’s criteria.

Numerous heuristic approaches have been developed for the permuta-
tion flow shop problem (PFSP). Constructive methods such as Johnson’s 
algorithm [5], CDS’s algorithm [6], and Dannenbring’s Rapid Access (RA) 
procedure [7] are well-known examples. Among the preferable heuristics 
for PFSP is the NEH heuristic [8]. To achieve optimal results, metaheuristic 
algorithms have been introduced. Notable examples include the iterated 
greedy (IG) algorithm, proposed by Ruiz and Stützle [9]; tabu search (TS), 
presented by Nowicki and Smutnicki [10]; and simulated annealing (SA), 
developed by Osman and Potts [11]. Furthermore, other metaheuristics 
based on local search algorithms have been utilized for solving the PFSP. 
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For instance, the iterative local search (ILS) algorithm has been applied in 
[12], while the variable neighborhood search (VNS) has been explored in 
[13]. Nature-inspired algorithms have also found their place in addressing 
PFSP scheduling problems. Notable examples include the ant colony opti-
mization (ACO) algorithm discussed in [14], the artificial bee colony (ABC) 
algorithm presented in [15], and the migratory bird optimization (MBO) 
algorithm highlighted in [16]. It is worth noting that these metaheuristics 
will continue to be further developed and improved in future research to 
better align with the evolving needs of industries, as demanded by both 
customers and managers.

We find that many works show that the hybrid metaheuristics that 
combine two or more scheduling algorithms can give well desired results. 
Indeed, when the hybridization is applied to a scheduling problem, a sig-
nificant enhancement in terms of optimization can be achieved. Therefore, 
a hybrid metaheuristic can enhance the effectiveness of results given by a 
single-based scheduling algorithm [17]. In this work, we will implement 
three variant of metaheuristics; the first is iterated greedy with tabu search 
(IGTS), the second is iterated greedy with simulated annealing (IGSA) while 
the last is iterated greedy with both tabu search and simulated annealing 
(IGSATS). Moreover, we will compare all with the classical NEH heuristic. 
We will take some instances of different sizes from small-medium to rela-
tively medium-large ones. The objective will be to seek an optimal sequence 
that gives the best completion time. Numerical tests show that the IGSATS 
algorithm is relatively more effective in minimizing the makespan than 
other IGSA and IGTS algorithms.

The rest of the chapter is organized as follows. Section 22.2 provides the 
permutation flow shop scheduling problem formulation with a makespan 
criterion. In Section 22.3, we give a detailed description of IGSA, IGTS, 
and IGSATS algorithms. The effectiveness of three proposed algorithms is 
verified through numerical experiments and results are discussed in Section 
22.4. Finally, a conclusion and perspectives are given in Section 22.5.

22.2  PROBLEM STATEMENT

In the permutation flow shop scheduling problem, all jobs follow the identi-
cal order of processing. Our goal is to find a collection of compromise solu-
tions in order that the makespan is minimized. Flow shop scheduling may 
be a typical line problem where n different jobs must be handled on differ-
ent machines. All jobs are processed on all machines within the same order. 
The interval of the roles on the machines is fixed irrespective of the order 
during which the processing is performed. The issue is to sequence n inde-
pendent jobs on m different machines. Following the identical notations 
proposed by Reeves [18], Tkh is the processing time for job k on machine h 
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and employment permutation is represented by the sequence β = {β1, β2, ..., 
βn}. When there are n jobs and m machines, the completion time Q (βk, h) 
is calculated as follows:

 Q (β1,1) = T (β1,1) (22.1)

 Q (βk,1) = Q (β(k−1),1) + T (βk,1), k = 2, ..., n (22.2)

 Q (β1, h) = Q (β1, h − 1) + T (β1, h), h = 2, ..., m (22.3)

 Q (βk, h) = max{Q (β(k−1),h),Q (βk, h − 1)} + T (βk, h),  
 k = 2, ..., n, h = 2, ..., m (22.4)

Essentially, the makespan is defined as:

 Cmax (β) = Q (βn,m) (22.5)

The next task is to determine a permutation β∗ in the selection of all 
permutations Π such that:

 Cmax (β∗) ≤ Cmax (β) ∀β ∈ Π (22.6)

22.3  PROPOSED ALGORITHMS: 

IGSA, IGTS, AND IGSATS

We propose three algorithms for solving our problems: the iterative greedy 
algorithm with tabu research (IGTS), the iterative greedy algorithm with 
the simulated annealing model (IGSA), and finally the combination of the 
iterative greedy simulated annealing and tabu research and (IGSATS). This 
last approach could be a combined hybrid metaheuristic of three resolution 
algorithms. We note that hybrid metaheuristics show great utility in speed 
of convergence toward an honest solution for optimization problems. We 
focus in resolution model descriptions on the last three approaches, i.e., 
IGSA, IGTS, and IGSATS.

22.3.1  Iterated greedy with simulated 
annealing (IGSA)

The iterated greedy algorithm is a metaheuristic designed for flow shop 
scheduling problems, focusing on single-solution optimization. It begins 
with an initial solution and iteratively perturbs a sequence while searching 
for the local optimum. The algorithm employs a destructive approach in 
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which several jobs are removed from a permutation β of n jobs during each 
iteration, chosen randomly and without repetition. These removed jobs 
form two subsequences: βD, which contains the remaining (n – d) jobs after 
removal, and βR, which consists of the d jobs that need to be reinserted into 
βD to form a complete candidate solution. The construction phase starts 
with βD and iteratively inserts the jobs from βR into βD. Each step involves 
inserting the first job, βR(1), into all possible (n - d + 1) positions of βD. 
The optimal position for βR(1) is determined by evaluating the resulting 
sequence’s Cmax, aiming to minimize it. This process continues until βR 
is empty or a final solution is achieved. Thus, βD is restored to its original 
size, n, after the destruction-construction procedure. In the local search 
phase, the algorithm seeks a local optimum for the sequence. The simulated 
annealing method is employed as the acceptance criterion due to its excel-
lent performance. The criterion utilizes a constant temperature determined 
by the T0 parameter of the IGSA algorithm.

 Temperature T
Tkh

m n
k

n

h

m

� �
� �

� �� �
0 1 1

10
 (22.7)

We retain this expression, which clearly shows the characteristics of the 
instance which are the number of jobs n, the number of machines m, and 
the processing time Tkh of each job on each machine. The criterion uses a 
constant temperature that depends on the T0 parameter of the algorithm 
IGSA.

22.3.2  Iterated greedy with tabu search (IGTS)

The original IG algorithm employs a local search procedure to generate a 
new sequence, and a decision must be made whether to accept it as the cur-
rent best solution for the next iteration. In this work, we draw inspiration 
from the taboo search (TS) method and adopt an acceptance criterion that 
allows for the acceptance of slightly worse solutions. In the proposed IGTS 
algorithm, we introduce a tabu list that memorizes a set of sequences that 
have not been explored in the neighborhood. Throughout the iterations, 
and depending on the stopping condition, we update the tabu list, which 
has a fixed size determined at the beginning.

22.3.3  Iterated greedy with simulated 
annealing and tabu search (IGSATS)

We propose a combined approach of the IGSA algorithm and the IGTS 
algorithm to solving scheduling PFSP. We consider here a circular tabu 
list containing sequences of tasks selected in the neighborhood generation 
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process. Before choosing the sequence that will pass the acceptance crite-
rion, we check that it does not appear in the tabu list. The tabu list keeps 
track of the latest solutions already visited. Each iteration with the a new 
tabu list will be updated.

22.4  COMPUTATIONAL RESULTS

In this section, we offer a comprehensive experimental evaluation and com-
parison of the proposed IGSATS algorithm with other powerful methods 
NEH, IGSA [19], and IGTS [20]. For the comparisons we use randomly 
generated instances where the processing times of the jobs are uniformly 
distributed between 1 and 99. The number of jobs is from 20 jobs to 160 
and therefore the number of machines is from 5 to 30. Within the simu-
lations, we use the same computational conditions, including the identi-
cal computer, the same artificial language, and the same stopping criteria. 
All considered algorithms are coded in MATLAB and run on a PC with 
Intel(R) Core(TM) i5-7200U CPU and 4G RAM. For the computational 
tests, we set the parameters d ∈ and T0 = 0.4. For all algorithms, the run 
time is restricted to 3,600 seconds or until the iterated number is equal to 
100. The performance of all algorithms is evaluated by a percentage devia-
tion (∆C%), which is calculated as follows:

 � �
� � � � �

� �
�C

Cmax NEH Cmax Algo

Cmax Algo
%

.

.
100  (22.8)

We note that Cmax (NEH) represents the value of makespan obtained by 
the algorithm NEH and Cmax(Algo.), the value of the makespan obtained 
by IGSA, IGTS, and IGSATS algorithms. To judge the performance of our 
suggested IGSATS algorithm. We will implement three variant of meta-
heuristics; the first is iterated greedy with tabu search, the second is iterated 
greedy with simulated annealing, while the last is iterated greedy with both 
tabu search and simulated annealing. Additionally, we will compare all of 
them with the classical NEH heuristic.

Computational results are summarized in Table 22.1 for the number of 
jobs, which is from 20 jobs to 160 and therefore the number of machines is 
from 5 to 30, where Cmax and ∆C% represent makespan and percentage 
deviations, respectively.

22.5  CONCLUSION AND PERSPECTIVES

The IGSATS algorithm’s success in solving the permutation flow shop issue 
with a makespan requirement is strongly dependent on its tabu-based recon-
struction technique. This reconstruction approach improves the algorithm’s 
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exploitability, resulting in a performance better than other high-performing 
algorithms. Thus, this study not only gives an appropriate metaheuristic 
for solving the FSP, but it also proposes a viable technique for improving 
the IG algorithm’s performance in handling additional issues. Several areas 
require more examination. First, applying the tabu-based reconstruction 
approach to improve the performance of other metaheuristics would be 
exciting. Second, investigating more powerful problem-dependent neigh-
borhood search techniques may improve the exploration capabilities of 
various algorithms while solving the FSP. Third, creating comparable tech-
niques for scheduling issues with other processing setups and/or objective 
functions might be a promising research path. Finally, coupling tabu-based 
processes with the IG and SA algorithms to solve other combinatorial opti-
mization problems has the potential to be a promising challenge for future 
study.
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